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Exam MFE/3F  Spring 2009 
 

Answer Key 
 

Question # Answer 

1 E 

2 B 

3 B 
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5 E 
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8 B 

9 E 

10 C 

11 C 
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1.  Answer: E 
 
We have S0 = 10, δ = 0.05, σ = 0.3, r = 0.05, and h = 1. By (10.10), 
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By (10.5),  
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The stock prices and call prices are listed at each node below:  
 
 
 
 
 
 
 
 
 
 
 
For the calculation of Cu, we have  
 

Cu = e−0.05[p*Cuu + (1 − p*)Cud] = 33.2796, 
 

but early exercise would be optimal at a value of 34.9859.  The time-0 price of the call is  
 

C = e−0.05[p*Cu + (1 − p*)Cd] = 14.1624. 
 
 
Remark: 
For a given volatility σ, if u and d are computed using the method of forward tree, then  
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As a result, 
2
1* <p ; this provides a check for p*. 

 

Su = 134.9859 
Early exercise: 34.9859 
Continuation: 33.2796 

Sd = 74.08182 
Cd = 0

S0 = 100 
C0 = 14.16 

Suu = 182.21188 
Cuu = 82.21188

Sud = 100 
Cud = 0 

Sdd = 54.8816 
Cdd = 0 
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2.  Answer: B 
 
(i) The average of the stock price is:  

 100 + )151025510010151015205(
12
1

++++−++++++  

 = 100 + 120
12
1

×  

 = 100 + 10 
 

 The payoff is thus 10.  
 
(ii) The call is knocked-out on Oct 31, 2008, when the stock price is 125.  
 The payoff is thus 0. 
 
(iii) The call is knocked-in on Feb 29, 2008, when the stock price is 120.  
 The payoff is thus max(115 – 110, 0) = 5. 
 
The maximum difference is 10 – 0 = 10. 
 
 
 
Remark:  While it is incorrect to say that an option that goes out of existence has an 
undefined payoff, some statements in the text can be confusing.  For the May 2009 exam, 
(A) was also accepted as a correct answer. 
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3. Answer: B 
 
Since  

u = 55/50 = 1.1     and      d = 40/50 = 0.8, 
we have, by (10.5),   

5041.0
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The no-arbitrage price of the call is 
 

3976.2)55041.0(]*)1(*[ 05.0
0 =×=−+= −− eCpCpeC du

rh  > 1.9. 
 
As a result, an arbitrageur would buy the underpriced call and then hedge the risk of the 
stock in order to obtain riskless arbitrage profit. This rules out (A), (D) and (E).  
 
Since the delta of the call is positive (see Figure 10.2 on page 320), the arbitrageur must 
short sell shares to eliminate the stock price risk. This rules out (C).  
 
Alternative method: 
  
We determine the replicating portfolio of the call option. Suppose that at t = 0, the 
replicating portfolio has Δ shares and B dollars in a bank account earning a risk-free rate 
of interest. Since the stock pays dividends, by investing all dividends in the stock, the 
number of shares would grow to Δeδh after h years.   
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The no-arbitrage price of the call is C = ΔS + B = 2.4 > 1.9.  
 
Therefore, Michael can make an arbitrage profit by purchasing the call option at $1.9 and 
short selling the replicating portfolio.  Since Δ > 0 and B < 0, shorting the replicating 
portfolio, in this case, means shorting 0.3016 shares of the stock and lending $12.6831 at 
the risk-free rate. 

Remark: In a binomial model, 
du

duh

SS
CC

e
−
−

=Δ −δ .  

In the Black-Scholes model,  Δ = e−δhN(d1).
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4. Answer: D 
 
We can construct an ordinary K-strike European put by buying K units of a K-strike 
European cash-or-nothing put and selling a K-strike European asset-or-nothing put: 
 

Ordinary Put = K × (Cash-or-nothing Put)  –  Asset-or-nothing Put. 
 

The two terms on the right-hand side above correspond to the two terms in the Black-
Scholes formula 

P = Ke–rT N(–d2) – S(0)e−δT N(−d1).  
 

The price of the asset-or-nothing put is S(0)e−δT N(−d1), which is a formula that can also 
be found in the middle of page 706. 
 

We are given S(0) = 1000, K = 600 (not 400), δ = 0.02, r = 0.025, σ = 20%, and T = 1. 
 

Thus, 

68.2679128.2
12.0

1)2.002.0025.0()600/1000ln( 2
2

1

1 ≈=
××+−+

=d . 
 

From the normal table, N(−2.68) = 1 – N(2.68) = 1 – 0.9963 = 0.0037 
 

Price of Puts = 1,000,000 × 1,000 × e−0.02 × 0.0037 = 3,626,735 ≈ 3.6 million 

 
 
 
 
 
5. Answer: E 
 

Path risk-neutral probability time-2 price of the bond time-2 payoff 
↑↑ 0.7 × 0.7 = 0.49 e–0.18 = 0.83527 0.9 – 0.83527 = 0.06473
↑↓ 0.7 × 0.3 = 0.21 e–0.12 = 0.88692 0.9 – 0.88692 = 0.01308
↓↑ 0.3 × 0.7 = 0.21 0.88692 0.01308 
↓↓ 0.3 × 0.3 = 0.09 e–0.06 = 0.94176 0 

 

The put price is 02854.001308.021.001308.021.006473.049.0 09.012.015.012.015.012.0 =×+×+× +++ eee
. 
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6. Answer: D 
 
Let f (x, t) = 1/x so that Y (t) = f (X(t), t).  
 

Then f x(x, t) = –1/x2, f xx(x, t) = 2/x3, and f t(x, t) = 0.  
 

By formulas (20.17a, b, c),  
 [dX(t)]2 = [(8 2 ( ))d 8d ( )]X t t Z t− + 2 = 82[dZ(t)]2 = 64dt.  
 

By Itô’s lemma,  
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which means that α( y) = 64y3 – 8y2 + 2y and β( y) = –8y2. 
 
 

Thus, α(½) = 7
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7. Answer: D 
 
Let Qu (Qd) be the price of a security that pays $1 when the up (down) state occurs, and r 
be the continuously compounded risk-free interest rate. Then 
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By using the 3rd equation, we get Qu = 0.565.  Putting back into the 2nd equation, we get  

4025.0)565.01210(
8
1

=×−=dQ , 

and hence it follows from the 1st equation that  
 

e–r = 0.565 + 0.4025 = 0.9675. 
 
Now if Sd is 6 instead of 8, then because r and S0 are unchanged, the system of 
simultaneous equations becomes 
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Eliminating Qd from the 2nd equation by using the 1st equation, we get  
 

69917.0)9675.0610(
6
1

=×−=uQ . 
 

Thus, C0 = 2Qu = 1.398. 
Remark:  The result is independent of the true probability of an up-move.  Analogously, 
the Black-Scholes equation and formulas do not depend on α.   
 
Alternative method: 
 
The time-0 price of the call option is  
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Setting 13.1
2.0
8.01

=
− −re , we get e–r = 0.9675 (or r = 3.3%). 

 

If Sd = 6, then d = 0.6, and   
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8. Answer: B 
 
The pricing formula for the derivative security, V, must satisfy the Black-Scholes partial 
differential equation (21.11) 
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For V(s, t) = ert ln s, we have 
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01.0)3.0(5.0055.0
2
1δ 22 =−=−= σr  

 
Alternative method:  

 
As the derivative security does not pay dividends, we have, for t ≤ T,  

V[S(t), t] = , ( [ ( ), ])P
t TF V S T T . 

In particular, 
V[S(0), 0] = 0, ( [ ( ), ])P

TF V S T T , 
which, in this problem, means 
 

   ln[S(0)] = E*[e–rTerT ln S(T)] = E*[ln S(T)]. 
 
Under the risk-neutral probability measure, 
 

ln S(T) ~ N(ln S(0) + (r – δ – ½σ 
2)T, σ 2T), 

 

which is a result given at the top of page 650, with α replaced by r – δ.  
 
Thus, the condition ln[S(0)] = E*[ln S(T)] means that (r – δ – ½σ  

2)T = 0, yielding the 
same solution as before. 
 
 
Third method (not in the syllabus): 
By the fundamental theorem of asset pricing, the stochastic process {e–rt V[S(t), t]} is a 
martingale with respect to the risk-neutral probability measure, yielding the condition 
  E*[ln S(t)]  =  ln S(0). 
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9. Answer: E 
 
By put-call parity (equation (9.4) on page 286, but replacing S0 by the foreign exchange 
rate x0 and the dividend yield δ by the foreign risk-free interest rate rf ), the price of a 4-
year dollar-denominated European call option on yens with a strike price of $0.008 is 
 

003764.0
008.0011.00005.0

)exp()exp(
403.04015.0
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−+=
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×−×− ee
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Note that 125 = 1/0.008.  By currency option put-call duality (equation (9.7) on page 
292), the price of a 4-year yen-denominated European put option on dollars with a strike 
price of ¥(1/0.008) is 

77325.42
011.0
1

008.0
1003764.0 =×× . 

 
Alternative method:  
 
Note that 125 = 1/0.008.  By currency option put-call duality (equation (9.7) on page 
292), the price of a 4-year yen-denominated European call option on dollars with a strike 
price of ¥(1/0.008) is 

68182.5
011.0
1

008.0
10005.0 =×× . 

 
By put-call parity, the price of a 4-year yen-denominated European put option on dollars 
with a strike price of ¥125 is  
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10. Answer: C 
 
Observe that  
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⎨
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If we long 1 unit of S1, then we must long 
2

1
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1 8.0
25.0
2.0

S
S

S
S

==Δ  shares of S2 so that  

dS1(t) + ΔdS2(t) 
has no dZ(t) term. 
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In terms of dollar amount,  
 

“1 share of S1” to “0.8S1/S2 shares of S2”  
= “S1 dollars invested in stock 1” to “0.8S1 dollars invested in stock 2”  
= 1 : 0.8. 

Thus, the percentage in stock 1 is 1 55.556%
1 0.8

=
+

. 

 
Remarks:  (i) The two expected rates of return, 0.08 and 0.0925, are not used in 
determining the proportion.  They are needed for determining r.  (ii) The proportion is 
independent of t. 
 
11. Answer: C 
 
To find the price, we need to first determine the negative constant a. 
 
From (ii), we know that true stock price process is a geometric Brownian motion with  
α = 0.05 and σ = 0.2.  By (20.35) (but replace r by α) or by the moment-generating 
function formula for a normal random variable, the expected value of the contingent 
claim at time T is  

}])1(
2
1)δ(exp{[)0(])(E[ 2 TaaaSTS aa σα −+−= . 

Substituting T = 1, S(0) = 0.5, δ = 0, α = 0.05 and σ = 0.2 into the equation above,  

04.1ln)5.0ln03.0(02.0
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a = –0.49985 or 33.66 (rejected) 
 
By the first part of Proposition 20.3 on page 667, the time-0 price of the contingent claim 
is  

0,1[ (1) ]P aF S  
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Alternatively, one can calculate the time-0 price using the formula E*[e–r S(1)a], where 
the asterisk signifies that the expectation is taken with respect to the risk-neutral 
probability measure.   
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12. Answer: E 
 
By (9.13), call price is a decreasing function of K.  Thus, C(50, T) ≥ C(55, T). 
By the footnote on page 300,  
 C(50, T) – C(55, T) ≤ (55 – 50)e–rT. 
Thus, (I) is correct. 
 
 

For (II) and (III), we start with their middle expression: 
    P(45, T) – C(50, T) + S. 
While there is not a direct relation between P(45, T) and C(50, T), we can use put-call 
parity to express P(45, T) in terms of C(45, T), 
 P(45, T) – C(50, T) + S  =  [C(45, T) – S + 45e–rT] – C(50, T) + S 
  =  C(45, T) – C(50, T) + 45e–rT. 
Similar to (I), we have 
 0  ≤  C(45, T) – C(50, T) ≤ (50 – 45)e–rT, 
which is equivalent to 
 45e–rT  ≤  C(45, T) – C(50, T) + 45e–rT ≤ 50e–rT. 
 

Thus, (III) is correct. 
 
Since (III) is correct, (II) must be incorrect. 
 
 
 
13. Answer: A  
 
8 months after purchasing the option, the remaining time to expiration = 4 months. 

02.1019888.1
12/426.0

12/4)26.0005.0()75/85ln( 2
2

1

1 ≈=
××+−+

=d ,  N(d1) ≈ 0.8461, 

87.0869777.012/426.0019888.112 ≈=−=−= Tdd σ ,  N(d2) ≈ 0.8078 
 

At time of purchase,  
 

C = SN(d1) – Ke−rTN(d2) ≈ 85 × 0.8461 − 75e−0.05 × (4/12) × 0.8078 = 12.3349 
 

Hence, 8-month holding profit is 12.3349 – 8e0.05×8/12 = 4.0637 ≈ 4.06. 
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14. Answer: E 
 

By (24.31), F0,2[P(2, 3)]  = (0,3)
(0, 2)

P
P

. 
 

In a Black-Derman-Toy model,  rdd, rud and ruu are in a geometric progression.  Thus, 
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Because the risk-neutral probability of an “up” and a “down” move are both 0.5, 
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Thus,  

F0,2[P(2, 3)] = 7115.0
69712.0
49603.0

= . 
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15. Answer: C 
 
The short-rate process is a Vasicek model with a = 0.1, b = 0.08, and σ = 0.05.   
 
We first determine the Sharpe ratio φ (r, t).  By (24.2) and (24.19), if the true short-rate 
process is  
   dr(t) = a(r(t)) dt + σ(r(t)) dZ(t), 

 

then the risk-neutral short-rate process is   
 

dr(t) = [a(r(t)) + σ(r(t))φ (r(t), t)]dt + ( ( ))d ( )r t Z tσ , 
 

where d ( ) d ( ) ( ( ), )dZ t Z t r t t tφ= − .  The stochastic process { ( )}Z t  is a standard Brownian 
motion under the risk-neutral probability measure.  By comparing the drift of the true 
process with that of the risk-neutral process, we get 

σ(r)φ (r, t) = 0.005. 
 
Since σ(r) = 0.05, we have φ (r, t) = 0.1 for all r and t.   
 
Now it follows from (24.17) that 
 

1.0
)5 ,2 ,04.0(

04.0)5 ,2 ,04.0(
=

−
q

α . 
 

So we need to find q(0.04, 2, 5).  By (24.12), 
( ,  ,  )( ,  ,  ) ( )
( ,  ,  )

rP r t Tq r t T r
P r t T

σ= − × . 

When the bond price has an affine structure (as in the case of Vasicek and CIR models), 
we have 

( ,  ,  ) ( , )
( ,  ,  )

rP r t T B t T
P r t T

− = , 

or 
( ,  ,  ) ( ,  ) ( )q r t T B t T rσ= × . 

 
For the Vasicek model,  

591818.2
1.0

1)](exp[1) ,(
31.0

interest  of force| =
−

=
−−−

==
×−

=−

e
a

tTaaTtB
atT . 

Hence,  
α(0.04, 2, 5) = 0.04 + (0.1 × 2.591818 × 0.05) = 0.05296. 
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16. Answer: A 
 
By line –3 on page 704, the risk-neutral probability that S(T) > K is N(d2), where 

2
2

ln( (0) / ) ( δ ½ )S K r Td
T

+ − − σ
=

σ
. 

As a result, the true probability that S(T) > K is )ˆ( 2dN , where 
2

2
ln( (0) / ) ( δ ½ )ˆ S K Td

T
+ α − − σ

=
σ

, 

which is (18.24). 
 
Now, S(0) = 100, α = 0.1, σ = 0.3, δ = 0, T = 0.75, and K = 125, giving 

2
2

ln(100 /125) (0.1 0 ½ 0.3 ) 0.75ˆ 0.700109.
0.3 0.75

d + − − × ×
= = −  

 
The answer is N(–0.7) = 1 – N(0.7) = 1 – 0.7580 = 0.242. 
 
 
Alternative method: 
 
Under the true probability measure, 
 

ln S(T)  ~  N(ln S(0) + (α – δ – ½σ 
2)T,  σ 2T), 

 

which is a result given at the top of page 650. 
 
Pr(S(T) > K)  
 

= Pr(ln S(T) > ln K)   
 

= Pr(Z >
2ln [ln (0) ( δ ½ ) ]K S T

T
− + α − − σ

σ
)   where Z ~ N(0, 1) 

 

= Pr(Z > 
2ln125 ln100 (0.1 0 ½ 0.3 ) 0.75

0.3 0.75
− − − − × × ) 

 

= Pr(Z >
75.03.0

75.0055.025.1ln ×− ) 
 

= Pr(Z > 0.700109) 
 

= 1 – 0.7580  
 

= 0.242  
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17. Answer: A 
 
(i) By the Black-Scholes formula, )()0()()),0(( 1

δ
2 dNeSdNKeTSP TrT −−−= −− . 

 Since the 1-year put is at-the-money and the stock is nondividend-paying, we have 
S(0) = K and δ = 0.  This yields 

)()()()(
)0(

)),0((
12

012.0
12 dNdNedNdNe

S
TSP rT −−−=−−−= −− , 

 where d1 = 
2 2ln[ (0) / ] ( δ ½ ) 0.012 ½S K r T

T
+ − + σ + σ

=
σσ

 and d2 = σ−1d . 
 

(ii) Delta of a put option is –e–δTN(–d1) = –[1 – N(d1)]. 
 
As a result, we have 

e–0.012N(–d2) – N(–d1) < 0.05                 (1) 
and  

1 – N(d1) = 0.4364.      (2) 
 
Equation (2) implies that N(d1) = 0.5636, or d1 = 0.16, which means  
 

2

2

0.012 ½ 0.16

0.32 0.024 0

+ σ
=

σ

σ − σ + =

 

 

σ = 0.12    or     σ = 0.2 
 

Equation (1) implies that  
 

N(–d2) < e0.012(0.05 + 0.4364) = 0.4923, 
 

or N(d2) > 0.5077, or d2 > 0.02. 
 
Since d2 = σ−1d , and d1 = 0.16, we must have σ < 0.14. So, σ = 0.12. 
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18: Answer: A 
 
Let )(d)(d)()(d tZtSttStS σα += . Then  

)]()5.0exp[()0()( 2 tZtStS σσα +−= . 
 

Thus, for stock 1, σ = 0.2 and α = 0.1 + 0.5 × 0.22 = 0.12. For stock 2, σ = 0.3 and  
α = 0.125 + 0.5 × 0.32 = 0.17. 
 

Because of the no-arbitrage constraint, (at each point of time) the Sharpe ratios 
σ

α r− of 

the two stocks must be equal: 

02.0
234.0336.0

3.0
17.0

2.0
12.0

=
−=−

−
=

−

r
rr

rr

 

 
 
 
19. Answer: D 
The question asks for the put-option version of formula (12.5) on page 380.  As pointed 
out in the last sentence of the first paragraph on page 381, σ is “the volatility of the 
prepaid forward.”  The formula for the unconditional variance in (iii) means that  
σ2 = 0.01. 
 
The time-0 prepaid forward price for time-1 delivery of the stock is 
 

 4303.45550)Div(PV)0()( 75.012.0
1,01,0 =−=−= ×−eSSF P  

 

The prepaid forward price of the strike is its discounted value, 
 )(1,0 KF P = 45e–0.12 = 39.9114. 

Thus, 
 

2
0,1 0,1

1

2

ln[ ( ) / ( )] ½

ln(45.4303/ 39.9114) ½ 0.1 1
0.1 1

1.34518 1.35

P PF S F K T
d

T

σ

σ

+
=

+ × ×
=

= ≈

 

 

24518.111.034518.112 =−=−= Tdd σ ≈ 1.25 
 
The price of the one unit of the put option is  

1941.0)9115.01(4303.45)8944.01(9114.39)()()()( 11,021,0 =−−−=−−− dNSFdNKF PP  
 
The price of 100 units of the put option is 19.41. 
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Remarks  To derive (12.5), one assumes that the prepaid forward price process,  
{ , ( )P

t TF S ; t ≤ T}, is a geometric Brownian motion with volatility σ, i.e., one assumes that 

   ,

,

d ( )
( )

P
t T
P

t T

F S
F S

  =  μdt  +  σdZ(t),  t ≤ T, 

or 
        , ( )P

t TF S   =  0, ( )P
TF S exp[(μ – ½σ2)t + σZ(t)], t ≤ T. 

Thus, 
  Var[ln , ( )P

t TF S ]  =  Var[σZ(t)]  =  σ2t,  t ≤ T, 
which is condition (iii) in the question.  For a derivation of (12.5), see Proposition 6.2.3 
in the book Martingale Methods in Financial Modelling by M. Musiela and M. 
Rutkowski (1997).   
 
The textbook treats two cases of dividend payments:  

(i) The dividends are deterministic.  That is, their amounts and when they are paid 
are known and fixed. 

(ii) The stock pays dividends continuously at a rate proportional to its price.  
Because the stock price is stochastic, the dividends are stochastic. 

Case (i):  With deterministic dividends, the stock price is      
S(t)  =  , ( )P

t TF S  +  PVt,T(Div),  t ≤ T, 
which is equivalent to formula (5.3) on page 131 of McDonald (2006).   Differentiating 
the equation with respect to t yields 
     dS(t) =  ,d ( )P

t TF S  +  dPVt,T(Div) 

    =  , ( )P
t TF S [μdt + σdZ(t)]  +  dPVt,T(Div). 

If t is not a dividend-payment date, then dPVt,T(Div)  =  PVt,T(Div) (rdt).  If t is a 
dividend-payment date, then the differential dPVt,T(Div) is the negative of the amount of 
dividend paid at that time.  Because of the stock price jumps downward at each dividend-
payment date, the stock price process {S(t)} does not have continuous sample paths and 
hence cannot be a geometric Brownian motion.  It follows from 

   d ( )
( )

S t
S t

  =  , ,( )[ d d ( )] dPV (Div)
( )

P
t T t TF S t Z t

S t
μ σ+ +

 

    =  , , ,( ) d dPV (Div) ( )
d ( )

( ) ( )

P P
t T t T t TF S t F S

Z t
S t S t

μ
σ

+
+  

that the volatility of the stock is  , ( )
( )

P
t TF S
S t

σ , which is a function of t, not a constant.   

The expression , ( )
( )

P
t TF S
S t

σ  gives a motivation for the “approximate correction” formula at 

the top of page 365 in McDonald (2006). 
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Case (ii):  The time-t prepaid forward price is 
   , ( )P

t TF S   =  e−δ(T−t)S(t),  t ≤ T. 
It follows from Itô’s Lemma that 
         d , ( )P

t TF S  =  e−δ(T−t)S(t)δdt  +  e−δ(T−t)dS(t)  +  0, 
or 

  ,

,

d ( )
( )

P
t T
P

t T

F S
F S

  =  δdt  +  d ( )
( )

S t
S t

. 

Hence, 

  d ( )
( )

S t
S t

  =  (α − δ)dt  +  σdZ(t) 

if and only if 

  ,

,

d ( )
( )

P
t T
P

t T

F S
F S

  =  αdt  +  σdZ(t). 

This means that the prepaid forward price process, { , ( )P
t TF S ; t ≤ T}, is a geometric 

Brownian motion if and only if the stock price process, {S(t)}, is a geometric Brownian 
motion; both stochastic processes have the same parameter σ. 
 
In case (i), the time-t price of the (deterministic) dividends paid between t and T is 
  S(t)  – , ( )P

t TF S  =  PVt,T(Div). 
In case (ii), the time-t price of the (stochastic) dividends paid between t and T is 
  S(t)  – , ( )P

t TF S  =  S(t)  –  e−δ(T−t)S(t)  =  S(t)[1  –  e−δ(T−t)]  =  S(t)δ T ta − , 

where the annuity-certain T ta −  is calculated using the dividend yield δ, not the risk-free 
rate r, as the force of interest. 
 
20. Answer: C 
According to equation (13.5) (or Taylor series expansion), for a small move of size ε in 
the stock price, 

2 21 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
1 ! 2 ! 2

V S V S V S V S V S S Sε ε ε ε ε′ ′′+ ≈ + + = + Δ + Γ . 

With V(S) = 2.34, Δ(S) = –0.181, and Γ(S) = 0.035, the equation above becomes 
2)035.0(

2
1)181.0(34.221.2 εε +−+= , 

or 
013.0181.00175.0 2 =+− εε , 

whose solutions are 

0175.02
13.00175.04)181.0(181.0

2
4 22

×
××−−±

=
−±−

=
a

acbbε   = 9.566324  or  0.776534 

 
The first solution ε = 9.566324 is not a small move in the stock price.  Thus, 
    ε = 0.776534 and  S(0) + ε = 86   ⇒  S(0) = 86 – 0.776534 = 85.223466 ≈ 85.20. 


