Course 4

Fall 2003 Society of Actuaries

****BEGINNING OF EXAMINATION****

- **1.** You are given the following information about a stationary AR(2) model:
 - (i) $\rho_1 = 0.5$
 - (ii) $\rho_2 = 0.1$

Determine ϕ_2 .

- (A) –0.2
- (B) 0.1
- (C) 0.4
- (D) 0.7
- (E) 1.0

(i) Losses follow a loglogistic distribution with cumulative distribution function:

$$F(x) = \frac{(x / \theta)^{\gamma}}{1 + (x / \theta)^{\gamma}}$$

(ii) The sample of losses is:

 10
 35
 80
 86
 90
 120
 158
 180
 200
 210
 1500

Calculate the estimate of θ by percentile matching, using the 40th and 80th empirically smoothed percentile estimates.

- (A) Less than 77
- (B) At least 77, but less than 87
- (C) At least 87, but less than 97
- (D) At least 97, but less than 107
- (E) At least 107

- (i) The number of claims has a Poisson distribution.
- (ii) Claim sizes have a Pareto distribution with parameters $\theta = 0.5$ and $\alpha = 6$.
- (iii) The number of claims and claim sizes are independent.
- (iv) The observed pure premium should be within 2% of the expected pure premium 90% of the time.

Determine the expected number of claims needed for full credibility.

- (A) Less than 7,000
- (B) At least 7,000, but less than 10,000
- (C) At least 10,000, but less than 13,000
- (D) At least 13,000, but less than 16,000
- (E) At least 16,000

4. You study five lives to estimate the time from the onset of a disease to death. The times to death are:

2 3 3 3 7

Using a triangular kernel with bandwidth 2, estimate the density function at 2.5.

- (A) 8/40
- (B) 12/40
- (C) 14/40
- (D) 16/40
- (E) 17/40

5. For the model $Y_i = \alpha + \beta X_i + \varepsilon_i$, where i = 1, 2, ..., 10, you are given:

- (i) $X_i = \begin{cases} 1, & \text{if the } i \text{th individual belongs to a specified group} \\ 0, & \text{otherwise} \end{cases}$
- (ii) 40 percent of the individuals belong to the specified group.
- (iii) The least squares estimate of β is $\hat{\beta} = 4$.

(iv)
$$\sum \left(Y_i - \hat{\alpha} - \hat{\beta}X_i\right)^2 = 92$$

Calculate the *t* statistic for testing $H_0: \beta = 0$.

- (A) 0.9
- (B) 1.2
- (C) 1.5
- (D) 1.8
- (E) 2.1

(i) Losses follow a Single-parameter Pareto distribution with density function:

$$f(x) = \frac{\alpha}{x^{(\alpha+1)}}, \quad x > 1, \quad 0 < \alpha < \infty$$

(ii) A random sample of size five produced three losses with values 3, 6 and 14, and two losses exceeding 25.

Determine the maximum likelihood estimate of α .

- (A) 0.25
- (B) 0.30
- (C) 0.34
- (D) 0.38
- (E) 0.42

- 7. You are given:
 - (i) The annual number of claims for a policyholder has a binomial distribution with probability function:

$$p(x|q) = {\binom{2}{x}} q^{x} (1-q)^{2-x}, \quad x = 0, 1, 2$$

(ii) The prior distribution is:

$$\pi(q) = 4q^3, \ 0 < q < 1$$

This policyholder had one claim in each of Years 1 and 2.

Determine the Bayesian estimate of the number of claims in Year 3.

- (A) Less than 1.1
- (B) At least 1.1, but less than 1.3
- (C) At least 1.3, but less than 1.5
- (D) At least 1.5, but less than 1.7
- (E) At least 1.7

8. For a sample of dental claims x_1, x_2, \ldots, x_{10} , you are given:

(i)
$$\sum x_i = 3860 \text{ and } \sum x_i^2 = 4,574,802$$

(ii) Claims are assumed to follow a lognormal distribution with parameters μ and σ .

(iii) μ and σ are estimated using the method of moments.

Calculate $E[X \land 500]$ for the fitted distribution.

- (A) Less than 125
- (B) At least 125, but less than 175
- (C) At least 175, but less than 225
- (D) At least 225, but less than 275
- (E) At least 275

- (i) Y_{iij} is the loss for the *j*th insured in the *i*th group in Year *t*.
- (ii) \overline{Y}_{ti} is the mean loss in the *i*th group in Year *t*.
- (iii) $X_{ij} = \begin{cases} 0, \text{ if the } j\text{th insured is in the first group } (i = 1) \\ 1, \text{ if the } j\text{th insured is in the second group } (i = 2) \end{cases}$
- (iv) $Y_{2ij} = \delta + \phi Y_{1ij} + \theta X_{ij} + \varepsilon_{ij}$, where i = 1, 2 and j = 1, 2, ..., n
- (v) $\overline{Y}_{21} = 30, \, \overline{Y}_{22} = 37, \, \overline{Y}_{11} = 40, \, \overline{Y}_{12} = 41$

(vi)
$$\hat{\phi} = 0.75$$

Determine the least-squares estimate of θ .

- (A) 5.25
- (B) 5.50
- (C) 5.75
- (D) 6.00
- (E) 6.25

10. Two independent samples are combined yielding the following ranks:

Sample I: 1, 2, 3, 4, 7, 9, 13, 19, 20 Sample II: 5, 6, 8, 10, 11, 12, 14, 15, 16, 17, 18

You test the null hypothesis that the two samples are from the same continuous distribution.

The variance of the rank sum statistic is:

$$\frac{nm(n+m+1)}{12}$$

Using the classical approximation for the two-tailed rank sum test, determine the *p*-value.

- (A) 0.015
- (B) 0.021
- (C) 0.105
- (D) 0.210
- (E) 0.420

- (i) Claim counts follow a Poisson distribution with mean θ .
- (ii) Claim sizes follow an exponential distribution with mean 10θ .
- (iii) Claim counts and claim sizes are independent, given θ .
- (iv) The prior distribution has probability density function:

$$\pi(\theta) = \frac{5}{\theta^6}, \ \theta > 1$$

Calculate Bühlmann's k for aggregate losses.

- (A) Less than 1
- (B) At least 1, but less than 2
- (C) At least 2, but less than 3
- (D) At least 3, but less than 4
- (E) At least 4

- (i) A survival study uses a Cox proportional hazards model with covariates Z_1 and Z_2 , each taking the value 0 or 1.
- (ii) The maximum partial likelihood estimate of the coefficient vector is:

$$\left(\hat{\boldsymbol{\beta}}_{1},\hat{\boldsymbol{\beta}}_{2}\right) = \left(0.71,0.20\right)$$

(iii) The baseline survival function at time t_0 is estimated as $\hat{S}(t_0) = 0.65$.

Estimate $S(t_0)$ for a subject with covariate values $Z_1 = Z_2 = 1$.

- (A) 0.34
- (B) 0.49
- (C) 0.65
- (D) 0.74
- (E) 0.84

- (i) Z_1 and Z_2 are independent N(0,1) random variables.
- (ii) *a*, *b*, *c*, *d*, *e*, *f* are constants.
- (iii) $Y = a + bZ_1 + cZ_2$ and $X = d + eZ_1 + fZ_2$

Determine E(Y|X).

(A) *a*

(B)
$$a+(b+c)(X-d)$$

(C)
$$a + (be + cf)(X - d)$$

(D) $a + \left[\left(be + cf \right) / \left(e^2 + f^2 \right) \right] X$

(E)
$$a + \left[(be + cf) / (e^2 + f^2) \right] (X - d)$$

-13-

(i) Losses on a company's insurance policies follow a Pareto distribution with probability density function:

$$f(x|\theta) = \frac{\theta}{(x+\theta)^2}, \quad 0 < x < \infty$$

(ii) For half of the company's policies $\theta = 1$, while for the other half $\theta = 3$.

For a randomly selected policy, losses in Year 1 were 5.

Determine the posterior probability that losses for this policy in Year 2 will exceed 8.

- (A) 0.11
- (B) 0.15
- (C) 0.19
- (D) 0.21
- (E) 0.27

15. You are given total claims for two policyholders:

	Year			
Policyholder	1	2	3	4
X	730	800	650	700
Y	655	650	625	750

Using the nonparametric empirical Bayes method, determine the Bühlmann credibility premium for Policyholder Y.

- (A) 655
- (B) 670
- (C) 687
- (D) 703
- (E) 719

16. A particular line of business has three types of claims. The historical probability and the number of claims for each type in the current year are:

Туре	Historical Probability	Number of Claims in Current Year
А	0.2744	112
В	0.3512	180
С	0.3744	138

You test the null hypothesis that the probability of each type of claim in the current year is the same as the historical probability.

Calculate the chi-square goodness-of-fit test statistic.

- (A) Less than 9
- (B) At least 9, but less than 10
- (C) At least 10, but less than 11
- (D) At least 11, but less than 12
- (E) At least 12

- **17.** Which of the following is false?
 - (A) If the characteristics of a stochastic process change over time, then the process is nonstationary.
 - (B) Representing a nonstationary time series by a simple algebraic model is often difficult.
 - (C) Differences of a homogeneous nonstationary time series will always be nonstationary.
 - (D) If a time series is stationary, then its mean, variance and, for any lag k, covariance must also be stationary.
 - (E) If the autocorrelation function for a time series is zero (or close to zero) for all lags k > 0, then no model can provide useful minimum mean-square-error forecasts of future values other than the mean.

18. The information associated with the maximum likelihood estimator of a parameter θ is 4n, where *n* is the number of observations.

Calculate the asymptotic variance of the maximum likelihood estimator of 2θ .

(A)
$$\frac{1}{2n}$$

(B) $\frac{1}{n}$
(C) $\frac{4}{n}$
(D) $8n$
(E) $16n$

- (i) The probability that an insured will have at least one loss during any year is *p*.
- (ii) The prior distribution for p is uniform on [0,0.5].
- (iii) An insured is observed for 8 years and has at least one loss every year.

Determine the posterior probability that the insured will have at least one loss during Year 9.

- (A) 0.450
- (B) 0.475
- (C) 0.500
- (D) 0.550
- (E) 0.625

20. At the beginning of each of the past 5 years, an actuary has forecast the annual claims for a group of insureds. The table below shows the forecasts (X) and the actual claims (Y). A two-variable linear regression model is used to analyze the data.

t	X_t	Y _t
1	475	254
2	254	463
3	463	515
4	515	567
5	567	605

You are given:

- (i) The null hypothesis is $H_0: \alpha = 0, \beta = 1$.
- (ii) The unrestricted model fit yields ESS = 69,843.

Which of the following is true regarding the *F* test of the null hypothesis?

- (A) The null hypothesis is not rejected at the 0.05 significance level.
- (B) The null hypothesis is rejected at the 0.05 significance level, but not at the 0.01 level.
- (C) The numerator has 3 degrees of freedom.
- (D) The denominator has 2 degrees of freedom.
- (E) The *F* statistic cannot be determined from the information given.

21-22. Use the following information for questions 21 and 22.

	Number at Risk	
Time (t)	at Time t	Failures at Time t
1	30	5
2	27	9
3	32	6
4	25	5
5	20	4

For a survival study with censored and truncated data, you are given:

21. The probability of failing at or before Time 4, given survival past Time 1, is $_{3}q_{1}$.

Calculate Greenwood's approximation of the variance of $_{3}\hat{q}_{1}$.

- (A) 0.0067
- (B) 0.0073
- (C) 0.0080
- (D) 0.0091
- (E) 0.0105

21-22. (Repeated for convenience) Use the following information for questions 21 and 22.

	Number at Risk	
Time (t)	at Time <i>t</i>	Failures at Time t
1	30	5
2	27	9
3	32	6
4	25	5
5	20	4

For a survival study with censored and truncated data, you are given:

- **22.** Calculate the 95% log-transformed confidence interval for H(3), based on the Nelson-Aalen estimate.
 - (A) (0.30, 0.89)
 - (B) (0.31, 1.54)
 - (C) (0.39, 0.99)
 - (D) (0.44, 1.07)
 - (E) (0.56, 0.79)

	Probability of Claim	Probability of Claim
Amount of Claim	Amount for Risk 1	Amount for Risk 2
250	0.5	0.7
2,500	0.3	0.2
60,000	0.2	0.1

(i) Two risks have the following severity distributions:

(ii) Risk 1 is twice as likely to be observed as Risk 2.

A claim of 250 is observed.

Determine the Bühlmann credibility estimate of the second claim amount from the same risk.

- (A) Less than 10,200
- (B) At least 10,200, but less than 10,400
- (C) At least 10,400, but less than 10,600
- (D) At least 10,600, but less than 10,800
- (E) At least 10,800

(i) A sample $x_1, x_2, ..., x_{10}$ is drawn from a distribution with probability density function:

$$\frac{1}{2} \Big[\frac{1}{\theta} \exp(-\frac{x}{\theta}) + \frac{1}{\sigma} \exp(-\frac{x}{\sigma}) \Big], \quad 0 < x < \infty$$

(ii) $\theta > \sigma$

(iii)
$$\sum x_i = 150 \text{ and } \sum x_i^2 = 5000$$

Estimate θ by matching the first two sample moments to the corresponding population quantities.

- (A) 9
- (B) 10
- (C) 15
- (D) 20
- (E) 21

25. You are given the following time-series model:

$$y_t = 0.8y_{t-1} + 2 + \varepsilon_t - 0.5\varepsilon_{t-1}$$

Which of the following statements about this model is false?

- (A) $\rho_1 = 0.4$
- (B) $\rho_k < \rho_1, \ k = 2, 3, 4, \dots$
- (C) The model is ARMA(1,1).
- (D) The model is stationary.
- (E) The mean, μ , is 2.

26. You are given a sample of two values, 5 and 9.

You estimate Var(X) using the estimator $g(X_1, X_2) = \frac{1}{2} \sum (X_i - \overline{X})^2$.

Determine the bootstrap approximation to the mean square error of g.

- (A) 1
- (B) 2
- (C) 4
- (D) 8
- (E) 16

- **27.** You are given:
 - (i) The number of claims incurred in a month by any insured has a Poisson distribution with mean λ .
 - (ii) The claim frequencies of different insureds are independent.
 - (iii) The prior distribution is gamma with probability density function:

$f(\lambda) =$	$(100\lambda)^6 e^{-100\lambda}$
J (<i>n</i>)-	1202

(iv)	Month	Number of Insureds	Number of Claims
	1	100	6
	2	150	8
	3	200	11
	4	300	?

Determine the Bühlmann-Straub credibility estimate of the number of claims in Month 4.

-27-

- (A) 16.7
- (B) 16.9
- (C) 17.3
- (D) 17.6
- (E) 18.0

28. You fit a Pareto distribution to a sample of 200 claim amounts and use the likelihood ratio test to test the hypothesis that $\alpha = 1.5$ and $\theta = 7.8$.

You are given:

- (i) The maximum likelihood estimates are $\hat{\alpha} = 1.4$ and $\hat{\theta} = 7.6$.
- (ii) The natural logarithm of the likelihood function evaluated at the maximum likelihood estimates is -817.92.
- (iii) $\sum \ln(x_i + 7.8) = 607.64$

Determine the result of the test.

- (A) Reject at the 0.005 significance level.
- (B) Reject at the 0.010 significance level, but not at the 0.005 level.
- (C) Reject at the 0.025 significance level, but not at the 0.010 level.
- (D) Reject at the 0.050 significance level, but not at the 0.025 level.

-28-

(E) Do not reject at the 0.050 significance level.

(i) The model is
$$Y_i = \beta X_i + \varepsilon_i$$
, $i = 1, 2, 3$.

(ii)

i	X_i	$\operatorname{Var}(\varepsilon_i)$
1	1	1
2	2	9
3	3	16

(iii) The ordinary least squares residuals are $\hat{\varepsilon}_i = Y_i - \hat{\beta} X_i$, i = 1, 2, 3.

Determine $E(\hat{\varepsilon}_1^2|X_1, X_2, X_3)$.

- (A) 1.0
- (B) 1.8
- (C) 2.7
- (D) 3.7
- (E) 7.6

30. For a sample of 15 losses, you are given:

	Observed Number of
Interval	Losses
(0, 2]	5
(2, 5]	5
(5, ∞)	5

(ii) Losses follow the uniform distribution on $(0, \theta)$.

Estimate θ by minimizing the function $\sum_{j=1}^{3} \frac{(E_j - O_j)^2}{O_j}$, where E_j is the expected number of losses in the *j*th interval and O_j is the observed number of losses in the *j*th interval.

(A) 6.0

(i)

- (B) 6.4
- (C) 6.8
- (D) 7.2
- (E) 7.6

- (i) The probability that an insured will have exactly one claim is θ .
- (ii) The prior distribution of θ has probability density function:

$$\pi(\theta) = \frac{3}{2}\sqrt{\theta}, \ 0 < \theta < 1$$

A randomly chosen insured is observed to have exactly one claim.

Determine the posterior probability that θ is greater than 0.60.

- (A) 0.54(B) 0.58
- (B) 0.58
- (C) 0.63
- (D) 0.67
- (E) 0.72

Number of Accidents	Number of Policies
0	32
1	26
2	12
3	7
4	4
5	2
6	1
Total	84

32. The distribution of accidents for 84 randomly selected policies is as follows:

Which of the following models best represents these data?

- (A) Negative binomial
- (B) Discrete uniform
- (C) Poisson
- (D) Binomial
- (E) Either Poisson or Binomial

33. A time series y_t follows an ARIMA(1,1,1) model with $\phi_1 = 0.7$, $\theta_1 = -0.3$ and $\sigma_{\varepsilon}^2 = 1.0$.

Determine the variance of the forecast error two steps ahead.

- (A) 1
- (B) 5
- (C) 8
- (D) 10
- (E) 12

- (i) Low-hazard risks have an exponential claim size distribution with mean θ .
- (ii) Medium-hazard risks have an exponential claim size distribution with mean 2θ .
- (iii) High-hazard risks have an exponential claim size distribution with mean 3θ .
- (iv) No claims from low-hazard risks are observed.
- (v) Three claims from medium-hazard risks are observed, of sizes 1, 2 and 3.
- (vi) One claim from a high-hazard risk is observed, of size 15.

Determine the maximum likelihood estimate of θ .

- (A) 1
- (B) 2
- (C) 3
- (D) 4
- (E) 5

(i) $X_{\text{partial}} = \text{pure premium calculated from partially credible data}$

(ii)
$$\mu = E[X_{\text{partial}}]$$

(iii) Fluctuations are limited to $\pm k \mu$ of the mean with probability *P*

(iv) Z = credibility factor

Which of the following is equal to *P*?

(A)
$$\Pr\left[\mu - k\mu \le X_{\text{partial}} \le \mu + k\mu\right]$$

(B)
$$\Pr\left[Z\mu - k \le ZX_{\text{partial}} \le Z\mu + k\right]$$

(C)
$$\Pr\left[Z\mu - \mu \le ZX_{\text{partial}} \le Z\mu + \mu\right]$$

(D)
$$\Pr\left[1-k \le ZX_{\text{partial}} + (1-Z)\mu \le 1+k\right]$$

(E)
$$\Pr\left[\mu - k\mu \le ZX_{\text{partial}} + (1 - Z)\mu \le \mu + k\mu\right]$$

36. For the model $Y_i = \beta_1 + \beta_2 X_{2i} + \beta_3 X_{3i} + \beta_4 X_{4i} + \varepsilon_i$, you are given:

(i) N = 15

(ii)

$$(\mathbf{X}^{*}\mathbf{X})^{-1} = \begin{bmatrix} 13.66 & -0.33 & 2.05 & -6.31 \\ -0.33 & 0.03 & 0.11 & 0.00 \\ 2.05 & 0.11 & 2.14 & -2.52 \\ -6.31 & 0.00 & -2.52 & 4.32 \end{bmatrix}$$

(iii) ESS = 282.82

Calculate the standard error of $\hat{\beta}_3 - \hat{\beta}_2$.

- (A) 6.4
- (B) 6.8
- (C) 7.1
- (D) 7.5
- (E) 7.8

Claim Size (X)	Number of Claims
(0, 25]	25
(25, 50]	28
(50, 100]	15
(100, 200]	6

Assume a uniform distribution of claim sizes within each interval.

Estimate
$$E(X^2) - E[(X \wedge 150)^2]$$
.

- (A) Less than 200
- (B) At least 200, but less than 300
- (C) At least 300, but less than 400
- (D) At least 400, but less than 500
- (E) At least 500

- **38.** Which of the following statements about moving average models is false?
 - (A) Both unweighted and exponentially weighted moving average (EWMA) models can be used to forecast future values of a time series.
 - (B) Forecasts using unweighted moving average models are determined by applying equal weights to a specified number of past observations of the time series.
 - (C) Forecasts using EWMA models may not be true averages because the weights applied to the past observations do not necessarily sum to one.
 - (D) Forecasts using both unweighted and EWMA models are adaptive because they automatically adjust themselves to the most recently available data.
 - (E) Using an EWMA model, the two-period forecast is the same as the one-period forecast.

- (i) Each risk has at most one claim each year.
- (ii)

Type of Risk	Prior Probability	Annual Claim Probability
Ι	0.7	0.1
II	0.2	0.2
III	0.1	0.4

One randomly chosen risk has three claims during Years 1-6.

Determine the posterior probability of a claim for this risk in Year 7.

- (A) 0.22
- (B) 0.28
- (C) 0.33
- (D) 0.40
- (E) 0.46

- **40.** You are given the following about 100 insurance policies in a study of time to policy surrender:
 - (i) The study was designed in such a way that for every policy that was surrendered, a new policy was added, meaning that the risk set, r_i , is always equal to 100.
 - (ii) Policies are surrendered only at the end of a policy year.
 - (iii) The number of policies surrendered at the end of each policy year was observed to be:

1 at the end of the 1st policy year 2 at the end of the 2nd policy year 3 at the end of the 3rd policy year \therefore *n* at the end of the *n*th policy year

(iv) The Nelson-Aalen empirical estimate of the cumulative distribution function at time *n*, $\hat{F}(n)$, is 0.542.

What is the value of *n*?

- (A) 8
- (B) 9
- (C) 10
- (D) 11
- (E) 12

****END OF EXAMINATION****

Course 4, Fall 2003

FINAL ANSWER KEY

Question #	Answer	Question #	Answer
1	Α	21	Α
2	Ε	22	D
3	Ε	23	D
4	B	24	D
5	D	25	Ε
6	Α	26	D
7	С	27	B
8	D	28	С
9	Ε	29	В
10	D	30	Ε
11	С	31	Ε
12	Α	32	Α
13	Ε	33	B
14	D	34	В
15	С	35	Ε
16	B	36	С
17	С	37	С
18	В	38	С
19	Α	39	В
20	Α	40	Ε