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288 5 The Exponential Distribution and the Poisson Process
5.3. The Poisson Process

3.3.1. Counting Processes

A stochastic process {N(2), ¢ 2 0} is said to be a bounti‘ng process I N (t) repre-
sents the total number of “events” that occur by time ¢ Some examples of counting
processes are the folowing:

(a) If we let N(z) equal the number of persons who enter a particular store at
or prior to time ¢, then {N(#), ¢ > 0} is a counting process in which an event
corresponds to a person entering the store. Note that if we had let N () equal
the number of peisons in the store at time 2, then {N{t),t 2 0} wonld not be a
counting process (why not?)

(b) If we say that an event occurs whenever a child is born, then {N(¢), t > 0}
is a counting process when N (#) equals the total number of people who were
born by time ¢ [Does ¥ (¢) include persons who have died by time ¢? Explain
why it must ]

(c} ¥ N(¢) equals the number of goals that a given soécer player scores by
time ¢, then {N(¢), ¢ 2> 0} is a counting process. An event of this process will
occur whenever the soccer plaver scores a goal.

From its definition we see that for a counting process N (¢) must satisfy:

@ N =0.
(if) N(#) is integer valued.
(iti) Ifs < ¢, then N(s) € N(1).
(iv) Fors < t, N(#) — N(s) equals the number of events that occur in the
interval (s, t]. '

A counting process is said to possess independent increments if the nurmbers
of events that occur in disjoint time intervals are independent For example, this
means that the number of events that occur by timie 10 [that is, N(10)] must be
independent of the number of events that occur between times 10 and 15 [that is,
N(15) - N({10)].

The assumption of independent increments might be reasonable for example
(a), but it probably would be unreasonable for example (b). The reason for this is
that if in example (b) V() is very large, then it is probable that there are many
people alive at time #; this would lead us to believe that the number of new births
between time ¢ and time ¢ + s would also tend to be large [that is, it does not seem
1easonable that N (¢) isindependent of N {(t+5) — N (), and so {N{(#), t > 0} would
not have independent increments in example (b)]. The assumption of independent
increments in example (c) would be justified if we believed that the soccer player’s
chances of scoring a goal today do not depend on “how he’s been going” Xt would
not be justified if we believed in “hot streaks” or “slumps.”
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A counting process is said to possess stationary increments if the distribution of
the number of events that occur in any interval of time depends only on the length
of the time interval. In other words, the process has stationary increments if the
number of events in the interval (s, s + t) has the same distribution for all s

The assumption of stationary increments would only be reasonable in example
(a) if there were no times of day at which people were more likely to enter the
store. Thus, for instance, if there was a rush hour (say, between 12p.M and 1 M)
each day, then the stationarity assumption would not be justified. If we believed
that the earth’s population is basically constant (a belief not held at present by most
scientists), then the assumption of stationary increments might be reasonable in
example (b). Stationary increments do not seem to be a reasonable assumption in
example (c) since, for one thing, most people would agree that the soccer player
would probably score more goals while in the age bracket 25-30 than he would
while in the age bracket 35-40. It may, however, be reasonable over a smaller time
horizon, such as one year.

5.3.2. Definition of the Poisson Process

One of the most important counting processes is the Poisson procsss which is
defined as follows:

Definition 5.1 The counting process {N(#),¢ > 0} is said to be a Poisson
process having rate h, A > 0,if

i) N({0) =0
(ify The process has independent increments.
(iif} The number of events in any interval of length # is Poisson distributed with
mean A?. Thatis, foralls, t 2 0

At
P{N(@+35)—N(G)=n}= e—“(——f—-, n=01,...
Note that it follows from condition (iii) that a Poisson process has stationary
increments and also that

EIN®] = At

which explains why A is called the rate of the process.

To determine if an arbitrary counting process is actually a Poisson process, we
must show that conditions (i), (i), and (iii) are satisfied. Condition (i), which
simply states that the counting of events begins at time ¢ == 0, and condition (i)
can usually be directly verified from our knowledge of the process. However, it
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is not at all clear how we would determine that condition (iii) is satisfied, and for
this reason an equivalent definition of a Poisson process would be useful.

As a prelude to giving a second definition of a Poisson process we shall define
the concept of a function f(-) being o(h).
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5.3.3. Interarrival and Waiting Time Distributions

Consider a Poisson process, and let us denote the time of the first event by 1.
Further, for n > 1, let T, denote the elapsed time between the (n — 1)st and the
nth event. The sequence {7y, n = 1,2, ..} is called the sequence of interarrival
times. For instance, if 71 = 5 and 73 = 10, then the first event of the Poisson
process would have occusred at time 5 and the second at time 15.

We shall now determine the distribution of the T;,. To do so, we first note that
the event {7T; > ¢} takes place if and only if no events of the Poisson process occur
in the interval [0, #] and thus,

P{T >t} =P{N@®) =0} =¥
Hence, T} has an exponenﬁal distribution with mean 1/A. Now,
P{Th >t} = E[P{Tz > |T1}]
However,

P{Th >t|T:=s}=P{0eventsin (s, s +¢] | T3 =5}
= P{0events in (5, s + 7]}
=e ™M (5.12)

where the last two equations followed from independent and stationary increments.
Therefore, from Equation (5.12) we conclude that T3 is also an exponential random
variable with mean 1/A and, furthermore, that T3 is independent of 7;. Repeating
the same argument yields the following.

Proposition 5.1 T,,n = 1,2,..., ate independent identically distributed
exponential random variables having mean 1/A.

Remark The proposition should not surprise us. The assumption of stationary
and independenf: increments is basically equivalent to asserting that, at any pointin
time, the process probabilistically restarts itself. That is, the process from any point
on is independent of all that has previously occurred (by independent increments),
and also has the same distribution as the original process (by stationary increments).
In other words, the process has no memory, and hence exponential interarrival
times are to be expected.
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Another quantity of interest is S,, the arrival time of the nth event, also called
the waiting time until the nth event It is easily seen that

~

n
Si=) T, nzl

and hence from Proposition 5 1 and the results of Section 2.2 it follows that §, has

a gamma distribution with parameters » and A That is, the probability density of
Sy is given by

A n~-1
f5, (1) = Ae"“z(;fi—m, 130 (5.13)

Equation (5 13) may also be derived by noting that the nth event will occur prior
to or at time ¢ if and only if the number of events occurring by time ¢ is at least n
That is,

N zn & S, <t
Hence,

cQ

1)
Fs (f) = P{S, <t} = PIN(®) > n} = Ze—hﬂ__i)_
J=n i
which, upon differentiation, yields

f—1
fsnl®) = —-ZA - (“) £ ne 08

=7 G-
V) L vy cY) LA R = (m'
= \e At + Z At Z At
@ —1! G-
= e M -—-(M)n_l

(n—1)!

Example 5.11 Suppose that people immigrate into a territory at a Poisson rate
A = 1 perday. '
(a) What is the expected time until the tenth immigrant arrives?

(b) What is the probability that the clapsed time between the tenth and the
eleventh arrival exceeds two days?
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Solution:
(a) E[S10] = 10/A = 10 days.
) P{Ty >2}=e? =¢?~0133 N

Proposition 5.1 also gives us another way of defining a Poisson process. Suppose
we start with a sequence {7y, n > 1} of independent identically distributed expo-
nential random variables each having mean 1/x. Now let us define a counting
process by saying that the nth event of this process occurs at time

Si=Ti1+Th+ +Th
The resultant counting process {N(¢), ¢ 2 0}* will be Poisson with rate A.

Remark Another way of obtaining the density function of S, is to note that
because S, is the time of the nth event,

P{t <8, <t+h}=P{N(t) =n—1, oneeventin (¢, ¢t + h)} + olh)
= P{N(t) = n — 1}P{one event in (z, ¢ + )} + o(h)

— M ((M_)_ I)! [Ah + o(h)] + o(R)
n=-1
=g M ((:t_)_ I)Ih + ofh)

where the first equality uses the fact that the probability of 2 or more events in
(t,t + k) is o(h). If we now divide both sides of the preceding equation by k and
then let # — 0, we obtain

» . —At ()Lt)n—l
fs O =he 0

5.3.4. Further Properties of Poisson Processes

Consider a Poisson process {N(f), t 2 0} having rate A, and suppose that each time
an event occurs it is classified as either a type I or a type Il event. Suppose further
that each event is classified as a type I event with probability p or a type II event
with probability 1 ~ p, independently of all other events For example, suppose that
customers arrive at a store in actordance with a Po1sson process having rate A; and
suppose that each arrival i is male with p:obablhty 5 and female with probablhty 5.

*A formal definition of N(¢) is given by N(t) = max{n: S, € 1} where Sp =0
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Then a type I event would correspond to a male arrival and a type I event to a
fernale arrival, ‘

Let N1(¢) and Na(t) denote respectively the number of type T and type Il events
occurring in [0, ¢]. Note that N () = N} )+ N2 ()

Proposition 5.2 {Ni(¢),t > 0} and {N2(t),t > 0} are both Poisson pro-
cesses having respective rates Ap and A(1 — p). Furthermore, the two processes
are independent.

Proof 1tis easy to verify that {Mi(t), t > 0} is a Poisson process with rate Ap
by verifying that it satisfies Definition 5 3.

* N1(0) = O follows from the fact that N(0) = 0.

o Itis easy to see that {Ny(t), 7 > 0} inherits the stationary and independent
increment properties of the process {N (1), > 0}. This is tiue because the
distribution of the number of type I events in an interval can be obtained by
conditioning on the number of events in that interval, and the distribution of
this latter quantity depends only on the length of the interval and is independent
of what has occurred in any nenoverlapping interval, '

¢ PINi(I) =1} = P{N1(h) =1 | N(h) = 1}P{N(R) = 1}
T PN =1|N(b) 2 22PN > 2}
= p{Ah +o(h)) + o(h)
= Aph + o(h)

* P{Ni(h) 2 2} < P{N(R) > 2} = o(h)

Thus we see that {N1(¢), 1 > 0} is a Poisson process with rate Ap and, by a
similar argument, that {N2(¢),2 > 0} is a Poisson process with rate A(1 — p).
Because the probability of a type I event in the interval from ¢ to t+his
independent of all that occurs in intervals that do not overlap (z,t + k), it is
independent of knowledge of when type I events occur, showing that the two
Poisson processes are independent. (For another way of proving independence, see
Example 3.20) M

Example 5.12 ¥ immigrants to area A arrive at a Poisson rate of ten per week,
and if each immigrant is of English descent with probability % then what is the
probability that no people of English descent will emigrate to area A during the
month of February?

Solution: By the previous proposition it follows that the number of English-
men emigrating to area A during the month of Febrmary is Poisson distributed

with mean 4 -10 - IIE = 139” Hence the desired probability is ¢ =10/ &



298 3 The Exponential Distribution and the Poisson Process

It follows from Proposition 5.2 that if each of a Poisson number of individuals
is independently classified into one of two possible groups with respective proba-
bilities p and 1 — p, then the number of individuals in each of the two groups will
be independent Poisson random variables. Because this result easily generalizes to
the case where the classification is into any one of 7 possible groups, we have the
following application to a model of employees moving about in an organization

Example 5.14 Consider a System in which individuals at any time are
classified as being in one of possible states, and assume that an individual
changes states in accordance with a Markov chain having transition probabilities
FBij, i, j=1,...,r That is, if an individual is in state ; during a time period
then, independently of its previous states, it will be in state 7 during the next time
perdod with probability ;. The individuals are assumed to move through the
System independently of each other: Suppose that the numbers of people initially

In states 1,2, .. , 7 are independent Poisson random variables with respective
means Ap, Az, ..., A, We are interested in determining the Jjoint distribution of
the mumbers of individuals in states 1,2, .. ., r at some time n.

Solution: For fixed Ll Ni(), j =1, .1 denote the number of those
individuals, initially in state , that are in state j at time g, Now each of the



5.3. The Poisson Process 299

with respective means A Pf'}, j =1,... ,r Because the sum of independent
Poisson random variables is itself a Poisson random variable, it follows that
the number of individuals in state j at time n—namely 3 ;_; N; ({)—will be
independent Poisson random variables with respective means YA Pi’}, for

j=1,...,r. H
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Application of Theorem 5.2 (Sampling a Poisson Process) In
Proposition 5.2 we showed that if each event of a Poisson process is indepen-
dently classified as a type I event with probability p and as a type II event with
probability 1 — p then the counting processes of type I and type 1 events are
independent Poisson processes with respective rates Ap and A(1 — p). Suppose
now, however, that there are & possible types of events and that the probability
that an event is c}assiﬁéd asatypeievent,i =1,.. .,%, depends on the time the
event occurs Specifically, suppose that if an event occurs at time ¥ then it will be
classified as a type i event, independently of anything that has previously occurred,
with probability P;(y),i = 1,. ., k where Z§=1 F;(y) = 1. Upon using Theorem
5 2 we can prove the following useful proposition.

Proposition 5.3 IfnNi(n,i=1,.. & represents the number of type i events
occurring by time ¢ then N;(t),i = 1, ..., k, are independent Poisson random
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variables having means

T
EIN: ()] = A / Pi(s)ds
0
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Example 5.18 (Tracking the Number of HIV Infections) There is a relatively
long incubation period from the time when an individual becomes infected with
the HIV virus, which causes AIDS, until the symptoms of the disease appear,
As a result, it is difficult for public health officials to be certain of the number of
members of the population that are infected at any given time We will now present
a first approximation model for this phenomenon, which can be used to obtain a
rough estimate of the number of infected individuals.

Let us suppose that individuals contract the HIV virus in accordance with a
Poisson process whose rate A is unknown. Suppose that the time from when an
individual becomnes infected until symptorns of the disease appear is a random
variable having a known distribution G Suppose also that the incubation times of
different infected individuals are independent.

Let N1(t) denote the number of individuals who have shown symptoms of the
disease by time ¢, Also, let N2 (¢) denote the number whe are HIV positive but have
not yet shown any symptoms by time ¢. Now, since an individual who contracts
the virus at time s will have symptorms by time ¢ with probability G(z — s) and
will not with probability G{t — s), it follows from Proposition 3.3 that ¥ (¢) and
N3 (t) are independent Poisson random variables with respective means

't ¥
ETN1(0)] =l/ G@ —5)ds =)~/ G(y)dy
Jo Jo
and
{F3 _ ! _
EIN2(8)] =)«‘/ Gt ~s)ds =A‘[ G(y)dy
0 0

Now, if we knew A, then we could use it to estimate N3(z), the number of
individuals infected but without any outward symptoms at time ¢, by its mean
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value E[N,(r)]. However, since A is unknown, we must first estimate it Now, we
will presumbly know the value of Ny (t), and so we can use its known value as
an estimate of its mean E{N|(¢)]. Thatis, if the number of individuals who have
exhibited symptoms by time ¢ is 77, then we can estimate that

¥
ny & E[Ni(@#)] = }»/0 G(y) dy

Therefore, we can estimate A by the quantity ) given by

it
i=n1/]0 G(y)dy

Using this estimate of A, we can estimate the number of infected but symptomless
individuals at time ¢ by

it
estimate of Na(#) = A / G(y) dy
Jo

_nfy GOy dy
fo GO dy

For example, suppose that G is exponential with mean 2 Then G(y) = /%,
and a simple integration gives that .

nip(l — et/

estimate of N(t) = RS p—7m

If we suppose that t = 16 years, i = 10 years, and n; = 220 thousand, then the
estimate of the number of infected but symptomless individuals at time 16 is

2,200(1 — =1 6)

16 < 10(1 = e-16) — 21896

estimate =

That is, if we suppose that the foregoing model is approximately correct (and we
should be aware that the assumption of a constant infection rate A thatis nnchanging
over time is almost certainly a weak point of the model), then if the incubation
period is exponential with mean 10 years and if the total number of individuals
who have exhibited AIDS symptoms during the fixst 16 years of the epidemic is
220 thousand, thén we can expect that approximately 219 thousand individuals
are HIV positive though symptomless at time 16, W
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5.4. GCeneralizations of the Poisson Process

5.4.1. Nonhomogeneous Poisson Process

In this section we consider two generalizations of the Poisson process The first
of these is the nonhomogeneous, also called the nonstationary, Poisson process,
which is obtained by allowing the arrival rate at time ¢ to be a function of £.

Definition 5.4 The counting process {N(r), t > 0} is said to be 2 nonhomo-
geneous Poisson process with intensity function A1), t 2 0, if

(i) N(O)=0.

(i) {N(#), ¢ 2 O} has independent increments.
(jil) PN +h)—N(@) =22} =o0h).
(iv) P{N@+h)— N(t) =1} = A(t)h -+ o(h).

H we let
i
m(r)=/0 3 () dy

then it can be shown that

—Im(s—misy) I (s £ 1) — m{s))"
nl

PING+D)—~N(s) =n} =e , o nz0 (523)

That is, N (s +1) — N(s) is a Poisson random variable with mean m(s +1) —m(s).
Since this implies that N (¢) is Poisson with mean m(t), we call m(t) the mean
value function of the nonhomogeneous Poisson process.

The proof of Equation (5.23) follows along the lines of the proof of Theorem 5 1,
with a slight modification. Fix nonnegative values 5 and u, let

N:(t) = N(s+1)—N(s)
and define

g(t) = Efexp{-uN;()}]]
Then,
g(t + by = Elexp{—ul,(t + h)}]

= Elexp{—uN;(t)} exp{—u(N; (¢ + h} — N; ()
= g(t) Elexp{—u(N;(¢ + ) - N;:(t)]] by independent increments
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Conditioning on N{s + ¢t ~ &) — N (s + t) vields
Elexp{~u(Ns(@ + 1) — Ny())] = Elexp{~u(N(s +¢ + k) — N(s + O)}]
=1=As+0h4 e %A + )k + olh)

Hence,
g +h)=gty1 = A + Dk + e *Als + Oh) + o(h)
ar
B - h
£ ; £0) =g AG+ )™ -1+ %

Letting 4 — 0 gives
g =g@ AG+ (e - 1)
ot equivalently,

EAO]

20 =A(s+1)e™ - 1)

Consequently,

146} (y) — j
fo g(m ay = (e ) G+y)dy

Since g(0) = 1, the preceding yields that

1
loggty =(e* - 1) /0 Als + ) dy

or
?
g(t) =exp {/ As +y)dy(e™ — 1)}

Since the right side is the Laplace transform function of a Poisson variable with
mean fo A + ¥Ydy =mis + ) — m(s), the result follows from the fact that the
Laplace transform uniquely determines the distribution. M

Remark That N(s4¢) —N(s) has a Poisson distribution with mean
f ot A(y}dy is a conseguence of the Poisson limit of the sum of independent
Bernoulli random variables (see Example 2.47). To see why, subdivide the interval
Is, s+1] into z subintervals of length i where subinterval i goes from s+ (i — 1)%



318 5 The Exponential Distribution and the Poissorn Procass

tos+ili=1 . nLleth, =N(+ LYy — NG+ (- 1)£) be the number
of events that occur in subinterval i, and note that

P{z 2 events in some subinterval} = P (L_J{N,- > 2})

i=l

n
<Y PN 272)

i=1

=no(t/n) by Axiom 4

Because

lim. ¢ o(t/n)

ot/ = Jim 1 200 =0
it follows that, as n increases to co, the probability of having two or more events
in any of the n subintervals goes to 0. Consequently, with a probability goingto I,
N (1) will equal the number of subintervals in which an event occurs. Because the
probability of an event in subinterval i is A(s + i 2L+ 0(L), it follows, because
the number of events in different subintervals are independent, that when # is
large the number of subintervals that contain an event is approzimately a Poisson
random variable with mean

" AW
ZA (.s +z—) — +no(t/n)
= n)n

Ba,

. n ) t t ey
ngzgogx (S+1;1—) ;+no(r/n)=/s Ay dy
and the result follows. &

The importance of the nonhomogeneous Poisson process resides in the fact that
we no longer require the condition of stationary increments. Thus we now allow
for the possibility that events may be more likely to occur at certain times than
during other times

Example 522 Siegbert runs a hot dog stand that opens at 8 AM. From 8 until
11 AM. customers seem to artive, on the average, at a steadily increasing rate that
starts with an initial rate of 5 customers per hour at 8 A M. and teaches a maximum
of 20 customers per hour at 11 A.M. From 11 AM, until 1 p.v. the {average) rate
seems to remain constant at 20 customers per hour. However, the (average) arrival
rate then drops steadily from 1 p M. until closing time at 5 p.M. at which fime it has
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the value of 12 customers per hour. If we assume that the numbers of customers
arriving at Siegbert’s stand during disjoint time periods are independent, then
what is a good probability model for the preceding? What is the probability that
no customers arrive between 8:30 A M. and 9:30 A.M. on Monday morning? What
is the expected number of arrivals in this period?

Solution: A good model for the preceding would be to assume that arrivals
constitute a nonhomogeneous Poisson process with intensity function A(z)
given by

5+ 51, 03
Ay = {20, 3€rgs
20—2@—35), 5<t<9

and
A =2(t—9 fort > 9

Note that N (¢) represents the number of arrivals during the first £ hours that
the store is open. That is, we do not count the hours between 5 pM. and 8 A.M.
If for some reasons we wanted N (¢) to represent the number of arrivals during
the first # hours regardless of whether the store was open or not, then, assuming
that the process begins at midnight we would let

0, 0<t<8
5+5( —8), 8<r<1l
A = 120, 11<t<13
20~-20—13), 13<:<17
0, 17 <t <24

and
M) = A =24 fort > 24

As the number of arrivals between 8:30 A.M. and 9:30 AM. will be Poisson
with mean m(%) —m( %) in the first representation [and m(%) — m(izl) in the
second representation], we have that the probability that this number is zero is

3/2
exp —[ (5+5t)dt } = e~ 10
172

and the mean number of amrivals is

3/2
/ (5+5)dr =10 H
172
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Suppose that events occur according to a Poisson process with rate A, and
suppose that, independent of what has previously occurred, an event at time s is a
type 1 event with probability P (s) or a type 2 event with probability Py(s) = 1 —
Pi(s). If Ni(¢), ¢ 2 0, denotes the number of type i events by time z, then it easily
follows from Definition 5.4 that {N1 (), ¢ > 0} and {N2(), t > 0} are independent
nonhomogeneous Poisson processes with respective intensity functions A,(z) =
AF; (1), i = 1,2, (The proof mimics that of Proposition 5.2 ) This result gives us
another way of understanding (or of proving) the time sampling Poisson Process
result of Proposition 5 3 which states that ¥ (¢) and N (1) are independent Poisson
random variables with means E[N;(t)] = A [y Pi(s)ds,i = 1,2
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54.2, Compound Poisson Process

A stochastic process {X(t),# > 0} issaidtobe a compound Poisson process if it
can be represented as

N
XO=) % 120 (5.24)

i=1

wheze {N (), ¢ > 0}is a Poisson process, and {¥;, i > 1}isafamily of independent
and identically distributed random variables that is also independent of {N (), ¢ >
0} As noted in Chapter 3, the random variable X (t) is said to be a compound
Poisson random variable.

Examples of Compound Poisson Processes

Y =1,then X(t) = N (), and so we have the usual Poisson process,
(i) Suppose that buses arrive at a sporting event in accordance with a Poisson
process, and suppose that the numbers of fans in each bus are assumed to be
independent and identically distributed. Then {X (¢), ¢ > 0} is a compound
Poisson process where X () denotes the number of fans who have arrived byt
In Equation (524} ¥; represents the aumber of fans in the ith bus
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(iii) Suppose customers leave a supermarket in accordance with a Poisson
process. If ¥;, the amount spent by the ith customer, ;| = 1,2, .. , are inde-
pendent and identically distributed, then {X(2),t > 0} is a compound Poisson
process when X (#) denotes the total amount of money spent by time ¢,

Because X (#) is a compound Poisson random variable with Poisson parameter
At, we have from Examples 3.10 and 3.17 that

E[X ()] = AtE[11] (5 25)

and
Var(X (£)) = ME [yf] (5.26)
Example 5.24 Suppose that families Imigrate to an area ata Poissonrate A = 2
per week I the number of people in each family is independent and takes on the
values 1, 2, 3, 4 with respective probabilities é, % %, é, then what is the expected

value and variance of the number of individnals migrating to this area during a
fixed five-week period?

Solution: Ietting ¥; denote the number of people in the ith family, we have
that

E[Y]=13+2-3+3 §+4.1=3
E[f]=r e jan e gos
Hence, letting X (5} denote the mumber of immigrants during a five-week period,
we obtain from Equations (5.25) and (5.26) that
EX(5)]=2 5.3 =25
and

Va[X(9)]=2.5 £ =25 g
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There is a very nice representation of the compound Poisson process when the
set of possible values of the ¥; is finite or countably infinite. So let us suppose that
there are numbers «;, j > 1, such that

PiYy =uj} = p;, ZP;‘=1
J

Now, a compound Poisson process arises when events occur according to a
Poisson process and each event results in a random amount ¥ being added to
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the cumulative sum. Let us say that the event is a type j event whenever it results
in adding the amount at;, j 2> 1. That is, the ith event of the Poisson process is a
type j eventif ¥; = a;. If we let N; (2) denote the number of type j events by time
t, then it follows from Proposition 5 2 that the random variables N; (), j > 1, are
independent Poisson 1andom variables with respective means

E[Nj(r)] = Ap;t

Since, for each j, the amount «; is added to the cumulative sum a total of N; ()
times by time ¢, it follows that the cumulative sum at time # can be expressed as

X@) =Y a;N;(t) (5.27
J

As a check of Equation {5.27), let us use it to compute the mean and variance of
X(2). This yields

E{X(t)=E [Z aij(r)]
J
=Y a;E[N;(t)]
b

zZaj)\.pjr
i
= At E[ ¥1]

Also,

Var[X (1)] = Var [Z i N; (:)]

i

= Za? Var[N;(t)] by the independence of the N;(#), j 2 1
i

= Za:‘: Ap;t
j
= At E[YE]

where the next to last equality follows since the variance of the Poisson random
variable IV;(t) is equal to its mean.

Thus, we see that the representation (5.27) results in the same expressions for
the mean and variance of X (¢) as were previously derived.
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One of the uses of the representation (5.27) is that it enables us to conclude that
as ¢ grows large, the distribution of X () converges to the normal distribution. To
see why, note first that it follows by the central limit theorem that the distribution of
a Poisson random variable converges to a normal distribution as its mean increases.
(Why is this?) Therefore, each of the random variables N ;j{t) converges to a normal
random variable as ¢ increases. Because they are independent, and because the surm
of independent normal random variables is also normal, it follows that X {t) also
approaches a normal distribution as ¢ increases.

Example 5.26 In Example 5.24, find the approximate probability that at least
240 people migrate to the area within the next 50 weeks

Solution: Since X =2, E[¥;] = 5/2, E[¥?] = 43/6, we see that
E[X(50)] = 250, Var[ X (50)] = 4300/6
Now, the desired probability is

P{X(50) > 240} = P{X(50) > 239.5)
_ {Xﬁm—zm:>mas—ﬁo}
V430076 © /43006
=1—¢(~03922)
= ¢(0.3922)
= 0.6525

where Table 2.3 was used to deterimine $(0.3922), the probability that a standard
normal is less than 0.3922, &

Another useful result is that if {X(¢), z > 0} and {¥(2), ¢+ > 0} are independent
compound Poisson processes with respective Poisson parameters and distributions
A1, Frand Ag, F, then {X(#)+¥(#), ¢t 2 O}isalsoa compound Poisson process,
This is true because in this combined process events will occur according to a
Poisson process with rate A -+ A2, and each event independently will be from the
first compound Poisson process with probability A1 /(A1 + Az). Consequently, the
combined process will be a compound Poisson process with Poisson parameter
A1+ A2, and with distribution function F given by

Fx)

Fo) = Ry + —22
EEVESYRL AL+ A
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5.4.3. Conditional or Mixed Poisson Processes

Let {N(£), 1 > 0} be acounting process whose probabilities are defined as follows.
There is a positive random variable L such that, conditionalon L = A, the counting
process is a Poisson process with rate A Such a counting process is called a
conditional or a mixed Poisson process.

Suppose that L is continuous with density function ¢ Because

P{N{t+s)=N{s)=n}= /'m PN(+s)—N(G)=n|L=»xrg)dA
[}
= /lm M Qf-?igm dx (5.28)
0 n!

we see that a conditional Poisson process has stationary increments. However,
because knowing how many events occur in an interval gives information about
the possible value of L, which affects the distribution of the number of events in
any other interval, it follows that a conditional Poisson process does not generally
have independent increments. Consequently, a conditional Poisson process is not
generally a Poisson process. ’

Example 5.27 If g is the gamma density with parameters m and &,

Y (gl)m—l
g(}\‘) = fe m, A>0
then
5] n m—1i
rve=ni= [ o Eloern s
o n! {m—1)!
Ingm OO
_— [ e"(r+9)}‘l."+m_l da
alim — D1 Jo

Multiplying and dividing by &2 gives

ntm—1
9™ (n +m — ! /'W(z g (¢t + o)™
40

P{N(D =n}= alim — DI + gyntm n+m-— D!

Because (t + 8)e~ ¥4 ((r 4 )0+~ /(n 4+ m — 1) is the density function of
agamma (n -+ m, t +8) 1andom variable, its integral is 1, giving the result

== (27 2e) o)

Therefore, the number of events in an interval of length ¢ has the same distribution
of the number of failures that occur before a total of m successes are amassed,
when each trial is a success with probability r‘-?-_e' =
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To compute the mean and variance of N (¢), condition on L Because, conditional
on L, N(¢) is Poisson with mean L¢, we obtain

E[N(@)|L} = Lt
Var(N (ML) = Lt

where the final equality used that the variance of a Poisson random variable is
equal to its mean, Consequently, the conditional variance formula yields

Var (N (1)) = E[Lt] + Var(Lt)
= tE[L] -+ t* Var(L)
We can cornpute the conditional distribution function of L , giventhat N(§) = n,
as follows.

PIL<x, N(t) =n}

P{L < x|N(t) =n} =

P(N(t) = n}
WO PIL<x, Nt =n|L = A} g(\) dr
PI{N(t) =n}
_ Jo PIN(®) =n|L =2} g(A)dM
P{N(t) = n}

_ Jo e MOnm gy da
T e g(2) dA

where the final equality used Equation' (3.28). In other words, the conditional
density function of L given that N(z) = n is

e—lt AT g ( JL)

, A20 529
JoT e MAR g(3) d (529

Finen (A [ n) =

Example 5.28 An insurance company feels that each of its policyholders has
a rating value and that a policyholder having rating value » will make claims
at times distributed according to a Poisson process with rate A, when time is
measured in years The firm also believes that rating values vary from policyholder
to policyholder, with the probability distribution of the value of a new policyholder
being uniformly distributed over (0, 1). Given that a policyholder has made »
claims in his or her first ¢ years, what is the conditional distribution of the time
until the policyholder’s next claim?
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Solution: If T is the time until the next claim, then we want to compute

PIT >x | N(t) = n} Conditioning on the policyholder’s rating value gives,
upon using Equation (3 29),

P{T >x|N(t)=n}= /00 PT>x|L=2A N@t)=n}friney(A | n)d)r
0

5 e e=M AR gy,

Je=rtam g,

There is & nice formula for the probability that more than » events occur in an
interval of length ¢#. In deriving it we will use the identity

> i GO / je—rx BB 4 (5.30)
0

il !
Pl jl n!

which follows by noting that it equates the probability that the number of events
by time ¢ of a Poisson process with rate A is greater than » with the probability
that the time of the (n + 1)st event of this process (which has a gamma (n 4-1, 3)
distribution) is less than z. Interchanging A and ¢ in Equation (5 30) yields the
equivalent identity

oo .
A0 A n
> e—“g.._.%- =[ te””‘g?—dx (5.31)
; I 0 n:
j=n+l
Using Equation (5.28) we now have
o0 co i
Aty
PIN@® =n}= ) it B0 ,) g(A)dA
j=nt10 t
Nes) o ]
Aty
= j . Z e E—-:-?-g(A)dA (by interchanging)
0 jonti J:

oa A n
= fo /0 te”t* (I——;?— dx g(A) dA (using (5.31))
R g (Ex)” . .
= [ / gA)date™™ — dx  (by interchanging)
JQ x .

= ity EX)?
tx
--—/0 G{x)te T dx



Exercise

*40. Show that if {N; (), ¢
Ai, == 1 2, then {N(r), ¢
N@) =N+ Nao).

2 0} are independent Poisson Processes with rate
= 0} is a Poisson process with rate A; + A2 where



Solution

40. The easiest way is to use Definition 3 1. It is easy to see that {N (¢}, ¢ = 0}
will also possess stationary and independent increments Since the sum of two
independent Poisson random variables is also Poisson, it follows that N(z) is a
Poisson random variable with mean (A1 + A2)t



