
FALL 2005 
EXAM C SOLUTIONS 

 
Question #1 
Key: D 
 
ˆ(300) 3/10S =  (there are three observations greater than 300) 

ˆˆ (300) ln[ (300)] ln(0.3) 1.204H S= − = − = . 
 
 
Question #2 
Key: A 
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Question #3 
Key: E 
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Taking the ratio of these two equalities produces 5 9γ = .  From the second equality, 
2 29 [(500 / ) ] 5 ; (500 / ) 5; 223.61γ γθ θ θ= = = =  

 
 



Question #4 
Key: B 
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Insert the values for a, b, and c into the second equation to obtain 
2 2 4( 12 6 ) 8 ; 48 16 ; 3d d d d= + − − + = − = −  
Then 6c =  and 2 3( ) 6 3 ; (1) 4f x x x x f= + − =  
 
 
Question #5 
Key: E 
 
Begin with 

y 350 500 1000 1200 1500
s 2 2 1 1 1 
r 10 8 5 2 1 

Then 1
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The likelihood function is 
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The absolute difference is 0.09. 
 
 



Question #6 
Key: E 
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Question #7 
Key: A 
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Estimate is (8 / 33)(0.1) (25 / 33)(8 /15) 0.428.+ =

 

 
 
Question #8 
Key: D 
 
From the Poisson(4) distribution the probabilities at 0, 1, and 2 are 0.0183, 0.0733, and 0.1463.  
The cumulative probabilities are 0.0183, 0.0916, and 0.2381.  Because 0.0916 < 0.13 < 0.2381 
the simulated number of claims is 2.  Claim amounts are simulated from solving 

/10001 xu e−= −  for 1000ln(1 )x u= − − .  The two simulated amounts are 51.29 and 2995.73 for a 
total of 3047.02 
 
 



Question #9 
Key: B 
 
It may be easiest to show this by graphing the density functions.  For the first function the three 
components are each constant.  One is of height 1/20 from 0 to 2 (representing the empirical 
probability of 1/10 at 1, one is height 1/20 from 1 to 3 and one is height 8/20 from 2 to 4.  The 
following figure shows each of them and their sum, the kernel density estimator. 
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The triangular one is similar.  For the triangle from 0 to 2, the area must be 1/10.  With a base of 
2, the height is 1/10.  the same holds for the second triangle.  The third has height 8/10.  When 
added they look as follows; 
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The question asks about cumulative probabilities.  From 0 to 1 the first is linear and the second is 
quadratic, but by x = 1 both have accumulated 0.05 of probability.  Because the cumulative 
distribution functions are the same at 1 and the density functions are identical from 1 to 2, the 
distribution functions must be identical from 1 to 2. 
 



Question #10 
Key: D and E 
 
For the Poisson distribution, the mean, λ, is estimated as 230/1000 = 0.23. 
 
# of Days Poisson 

Probability 
Expected # of 
Workers 

Observed # of 
Workers 

χ2 

0 0.794533 794.53 818 0.69 
1 0.182743 182.74 153 4.84 
2 0.021015 21.02 25 0.75 
3 or more 0.001709 1.71 4 3.07 
Total   1000 9.35 
 
The χ2 distribution has 2 degrees of freedom because there are four categories and the Poisson 
parameter is estimated (d.f. = 4 – 1 – 1 = 2). 

 
The critical values for a chi-square test with two degrees of freedom are shown in the following 
table. 

 
Significance Level Critical Value 

10% 4.61 
5% 5.99 

2.5% 7.38 
1% 9.21 

 
9.35 is greater than 9.21 so the null hypothesis is rejected at the 1% significance level. 
 
 
Question #11 
Key: D 
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Question #12 
Key: C 
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Question #13 
Key: C 
 
Relative risk = 1 2e β β− −  
which has partial derivatives 0.2e−−  at 1̂ 0.05β =  and 2

ˆ 0.15β =  
Using the delta method, the variance of the relative risk is  
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Std dev = 0.0217 
upper limit = ( )0.2 1.96 0.0217e− +  
       = 0.8613 
 
Alternatively, consider the quantity 1 2β β+ .  The variance is 

( )
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.  The lower limit for this quantity is 

0.2 1.96 0.0007 0.1481− =  and the upper limit for the relative risk is 0.1481 0.8623e− = . 
 
 
Question #14 
Key: C 
 

The quantity of interest is ln 5000Pr( 5000)P X µ
σ
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.  The point estimate is 
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For the delta method: 
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Then the variance of P̂  is estimated as 2 2( 0.1422) 0.0444 ( 0.16) 0.0222 0.001466− + − =  and the 
lower limit is 0.87 1.96 0.001466 0.79496LP = − = . 
 



Question #15 
Key: A 
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Question #16 
Key: D 
 
The requirement is that 
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For the five answer choices, the left hand side is 34,364, 15,000, 27,125, 39,243, and 37,688.  
Only answer D meets the condition. 
 
 
Question #17 
Key: D 
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Question #18 
Key: A 
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Question #19 
Key: B 
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Question #20 
Key: A 
 
The given interval for H can be written as 0.775 1.96 0.063±  and therefore the estimated 
variance of Ĥ  is 0.063.  To apply the delta method, 

ˆ 2 0.775 2ˆ ˆˆ; ; ( ) ( ) ( ) ( ) (0.063) 0.134H H HdSS e e Var S e Var H e
dH

− − − −= = − − = − = . 

The point estimate of S is 0.775 0.4607e− =  and the confidence interval is 
0.4607 1.96 0.0134 0.2269± =  or (0.23, 0.69). 
 
 



Question #21 
Key: B 
 
The first step is to trend the year 1 data by 1.21 and the year 2 data by 1.1.  The observations are 
now 24.2, 48.4, 60.5, 33, 44, 99, and 132. 
The first two sample moments are 63.014 and 5262.64.  The equations to solve are 
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Taking four times the first equation and subtracting the second gives 2µ and therefore 
4(4.14336) 8.56839 4.00

2
µ −
= = . 

 
 
Question #22 
Key: A 
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Question #23 
Key: E 
 
By elimination, (A) is incorrect because ''(3) 1.833 0f = − ≠ , (B) is incorrect because 

''(0) 2 0f = − ≠ , (C) is incorrect because ''(0) 1 0f = − ≠ , and (D) is incorrect because 
''(0) 1 0f = − ≠ .  Therefore (E) must be correct.  Also, this function does meet all the 

requirements: 
' ' '' ''

0 1 0 1 0 1''(0) 0; (1) (1) 2; (1) (1) 0; (1) (1) 3; (3) 6; ''(3) 0f f f f f f f f f= = = = = = = = =  
 
 
Question #24 
Key: B and C 
 
For males, 1jc =  and for females, 0.27 1.31jc e= = .  Then, 

1 1 1ˆ (20) 0.6965
3 2(1.31) 2 2(1.31) 2 1.31

H = + + =
+ + +

 and ( )1.310.6965ˆ (20) 0.402femaleS e−= = . 

. 
 



Question #25 
Key: C 
 

5 5

1 1

( , ) ln ( ) ln ( 1) ln ln ( / )j j j
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= = + − − −∑ ∑ .  Under the null hypothesis it is 
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2
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(2, ) ln 2 ln 2ln ( / )j j
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l x xθ θ θ
=

= + − −∑ .  Inserting the maximizing value of 816.7 for θ  gives 

35.28− .  The likelihood ratio test statistic is 2( 33.05 35.28) 4.46− + = .  There is one degree of 
freedom.  At a 5% significance level the critical value is 3.84 and at a 2.5% significance level it 
is 5.02. 
 
 
Question #26 
Key: C 
 

It is given that n = 4, v = 8, and Z = 0.4.  Then, 40.4 84
a

=
+

 which solves for a = 4/3.  For the 

covariance, 
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Question #27 
Key: A 
 

u z x lognormal with deductible 
0.6217 0.31 5.8325 341.21 241.21 
0.9941 2.52 7.49 1790.05 1690.05 
0.8686 1.12 6.44 626.41 526.41 
0.0485 −1.66 4.355 77.87                  0 

   Average 614.42 
 
The value of z is obtained by inversion from the standard normal table.  That is, Pr( )u Z z= ≤ .  
The value of x is obtained from 0.75 5.6x z= + .  The lognormal value is obtained by 
exponentiating x and the final column applies the deductible. 
 



Question #28 
Key: B 
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Question #29 
Key: C 
 

The sample mean of 157(0) 66(1) 19(2) 4(3) 2(4) 0.5
248

+ + + +
=  is the maximum likelihood 

estimate of the geometric parameter β as well as the method of moments estimate of the Poisson 
parameter λ.  Then, 1(1 0.5) 0.6667P −= + =  and 0.5 0.6065Q e−= = .  The absolute difference is 
0.0602. 
 
 
Question #30 
Key: D 
 

5000(0) 2100(1) 750(2) 100(3) 50(4) 0.5125
8000

x + + + +
= =  and 

2 2 2 2 2
2 5000(0.5125) 2100(0.4875) 750(1.4875) 100(2.4875) 50(3.4875) 0.5874

7999
s + + + +
= = . 

Then, ˆ ˆ 0.5125v xµ = = =  and 2ˆ 0.0749a s x= − = .  The credibility factor is 
1 0.1275

1 0.5125 / 0.0749
Z = =

+
 and the estimate is 0.1275(1) 0.8725(0.5125) 0.5747.+ =  

 
 
Question #31 
Key: B 
 

(3000) 4 / 8 0.5ns F= = =  because for the p-p plot the denominator is n+1.  
3000/3300(3000) 1 0.59711t F e−= = − = .  For the difference plot, D uses a denominator of n and so 

4 / 7 0.59711 0.02568D = − = −  and the answer is 0.5 0.59711 0.02568 0.071.− + = −  
 
 



Question #32 
Key: B 
 

2 4( | 2, 2) (2 | ) (2 | ) ( ) ( )( / 0.039)q f q f q q q q q qπ π∝ = ∝ .  Because 
0.5 4

0.2
0.006186q dq =∫ , 

4( | 2, 2) / 0.006186q qπ = .  Given q, the expected number of claims is 
( | ) 0(0.1) 1(0.9 ) 2 0.9E N q q q q= + − + = + .  The Bayesian estimate is 

40.5

0.2
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0.006186
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Question #33 
Key: E 
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Question #34 
Key: A 
 
A is false because the test works best when the expected number of observations is about the 
same from interval to interval.  B is true (Loss Models, 427-8), C is true (Loss Models, 428), and 
D is true (Loss Models, 430). 
 
 
Question #35 
Key: E 
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Because α is needed, but not given, the answer cannot be determined from the information 
given. 


