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May 2007 Exam MFE Solutions 
1.  Answer = (B) 
 
Let D = the quarterly dividend.   
Using formula (9.2), put-call parity adjusted for deterministic dividends, we have 
    0.01 0.025 0.034.50 2.45 52.00 50D e D e e− − −⎡ ⎤ ⎡ ⎤= + − × − × − ×⎣ ⎦ ⎣ ⎦  

 ( )54.45 0.99005 0.97531 50 0.970446D= − × + − × . 
Rearranging the equation yields 

1.96356 54.45 4.50 48.5223 1.4277D× = − − = , 
or 

0.73D = . 
 
 
2.  Answer = (A) 
 
Let p be the true probability of the stock going up.  Thus, 

puS  +  (1 – p)dS  =  eαh S   (which is equation (11.3) on p. 347), 
yielding 

du
dep

h

−
−

=
α

. 

Because α = 0.1, 1h = , 1.433u = , and 0.756d = , we have p = 0.52. 
 
 
3. Answer = (C) 
 
Let P denote the price of the European put option.  Then, 
 ( ) ( )0.055 ½ 0.01 ½

2 198 100− × − ×= − − −P e N d e N d  
by formula (12.3) with  S = 100, K = 98, 1%δ = , 50%σ = , r = 5.5%, and T = ½. 
 
Here, 1d  is calculated using formula (12.2a) and is equal to 0.29755819 ≈ 0.30; 2d  is 
from formula (12.2b) and is equal to −0.0559952 ≈ −0.06.  From the normal cdf table, 
N(0.06)  = 0.5239 and N(−0.30) = 1 − 0.6179 = 0.3821.  
 
Thus,  P ≈ 0.055 / 2 0.01/ 298 0.5239 100 0.3821− −× − ×e e  = 11.93 ≈ 11.90. 
 
 
4.  Answer = (E) 
 
For a special put option with strike price K, the payoff upon immediate exercise is 
   K  −  50. 
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This value should be compared with P, the price of the corresponding one-period 
European put option.  The value of P can be determined using put-call parity: 

rP Ke Se Cδ− −= − + . 
With 50, 4%,S r= =  and 8%,=δ  

0.04 0.0850P K e e C− −= × − × + 0.9608 46.1558K C= − + . 
 

K  C  P K−50 
40 9.12   1.3962   −10 
50 4.91   6.7942     0 
60 0.71 12.2022   10 
70 0.00 21.1002   20 

 
From the table above, we see that it is not optimal to exercise any of these special put 
options immediately.  
 
 
5.  Answer = (D) 
 
By (12.9), 
  option stock | |= × Ωσ σ  = 0.50 × |Ω|, 
where Ω is the option elasticity.   
By (12.8), 
  Ω  =  SΔ/C, 
where Δ is the option delta, 
  Δ  =  1( )Te N dδ−  (see page 383). 
 By (12.1), 

        1 2( ) ( )T rTC Se N d Ke N dδ− −= −  

     =  SΔ  − 2( )rTKe N d− . 
Thus, 
        Ω =  SΔ/C   

=  SΔ/[SΔ  −  2( )rTKe N d− ]   

=  1/[1  −  2( )rTKe N d− /(SΔ)] 

       =  1/{1  −  [ 2( )rTKe N d− ]/[S 1( )Te N dδ− ]}. 
 
We are given 85, 80, 0, 5.5%, 1.S K r T= = = = =δ  
By equation (12.2a), d1 is 0.4812 ≈ 0.48; hence, 1( )N d  ≈ 0.6844. 
By equation (12.2b), d2 is −0.0188 ≈ −0.02; hence, 2( )N d  ≈ 0.4920. 
With these values, we obtain 

S 1( )Te N dδ−  ≈ 85×e0×0.6844 = 58.174, 

2( )rTKe N d−  ≈ 80×e−0.055×0.4920 = 37.2537. 
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Hence, 
 Ω  =  1/{1  −  [ 2( )rTKe N d− ]/[S 1( )Te N dδ− ]}  ≈  2.78, 
and 

option stock= ×σ σ  |Ω| 0.50 2.78 1.39≈ × = . 
 
Remark added in April 2009:  See also page 687 of McDonald (2006). 
  
 
6. Answer = (C) 
 
Because of the identity 
             Maximum( S1(3), S2(3) ) = Maximum( S1(3) – S2(3), 0) + S2(3),  
the payoff of the claim can be decomposed as the sum of the payoff of the exchange 
option in statement (v) of the problem and the price of stock 2 at time 3.  In a no-
arbitrage model, the price of the claim must be equal to the sum of the exchange 
option price (which is 10) and the prepaid forward price for delivery of stock 2 at 
time 3 (which is 2 3e−δ × ×S2(0)).  So, the answer is 

10  +  e−0.1×3×200  =  158.16. 
 
Remark:  If one buys 2 3e−δ ×  share of stock 2 at time 0 and re-invests all dividends, 
one will have exactly one share of stock 2 at time 3. 
 
 
7.  Answer = (E) 
 
By formula (24.32), the call option price is 

C  =  P(0, T)[F N(d1)  –  K N(d2)],  
where 

T = 1, 
P(0, T) = P(0, 1) = 0.9434, 
F = F0, 1[P(1, 2)]  =  P(0, 2)/P(0, 1)  =  0.8817/0.9434  =  0.934598, 
K = 0.9259. 

With σ  = 0.05, we have 

d1 = 
T

TKF

σ

σ+ 2
2
1)/ln(

 = 0.212011 ≈ 0.21, 

d2 =  d1 − Tσ  ≈  0.21 – 0.05 = 0.16.  
Thus, 

N(d1) ≈ N(0.21) = 0.5832, 
N(d2) ≈ N(0.16) = 0.5636. 

Hence, 
       C =  P(0, T)[F N(d1)  –  K N(d2)] 

=  0.9434[0.9346×0.5832  –  0.9259×0.5636] 
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=  0.9434×0.02322  ≈ 0.022 
 

Remarks:  (1) The footnote on page 791 points out that the call option price formula 
can also be expressed as 

 C  =  P(0, 2)N(d1)  –  KP(0, 1)N(d2).  
(2) The symbol F in the Black formula (24.32) denotes a forward price, but the same 
symbol in the Black formula (12.7) denotes a futures price.  There is no contradiction 
because, in the Black model discussed on page 381, the interest rate is constant.  It is 
stated on page 146 that “if the interest rate were not random, then forward and futures 
price would be the same.”   
(3) Consider a forward contract, with delivery date T, for an underlying asset whose 
price at time T is denoted by S(T).  For t < T, the time-t prepaid forward price is 
   P

TtF , [S(T)]  = ∗
tE [e−R(t, T) S(T)] 

by risk-neutral pricing.  Here, we use the notation in the last paragraph of page 783; 
∗
tE  means the conditional expectation with respect to the risk-neutral probability 

measure given the information up to time t, and  

    R(t, T)  =  ∫
T

t
duur )( .    (24.21) 

Thus, the time-t forward price is 

 Ft,T [S(T)]  = 
),(

1
TtP

P
TtF , [S(T)]  = 

),(
1

TtP
∗
tE [e−R(t, T) S(T)]. 

Noting (24.20), we can rewrite this formula as 

   Ft, T [S(T)]  =  
][

)]([
),(

),(

TtR
t

TtR
t

eE
TSeE

−∗

−∗

. 

If the short-rate, r(u), is not stochastic, then the right-hand side is 

  
][

)]([
),(

),(

TtR
t

TtR
t

eE
TSeE

−∗

−∗

 =  
]1[
)]([

),(

),(

∗−

∗−

t
TtR

t
TtR

Ee
TSEe

 = ∗
tE [S(T)], 

which is the formula for the time-t futures price of the underlying asset deliverable at 
time T. 
(4)  Consider the special case S(T) = P(T, T + s).  Then the time-t prepaid forward 
price of the zero-coupon bond deliverable at time T is 
          P

TtF , [P(T, T + s)]  =  ∗
tE [ e−R(t, T) P(T, T + s)] 

     =  ∗
tE [ e−R(t, T) ∗

TE [e−R(T, T+s)]] 
     =  ∗

tE [ e−R(t, T) e−R(T, T+s)] 
     =  ∗

tE [ e−R(t, T) − R(T, T+s)] 
     =  ∗

tE [e−R(t, T+s)]   
=  P(t, T + s), 

where the third equality is by the law of iterated expectations.  Thus, the time-t 
forward price is 

 Ft, T[P(T, T + s)]  =  
),(

1
TtP

P
TtF , [P(T, T + s)]  =  

),(
1

TtP
P(t, T + s), 

which is equation (24.31).   
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8.  Answer = (C) 
 
By formulas (12.1) and (12.2a, b), with 0δ = , the call option price is  

1 1
2 2

1 1
2 2

1
2

(0) ( ) (0) ( )

(0) ( ) ( )

(0) 2 ( ) 1

rT rTS N T S e e N T

S N T N T

S N T

σ σ

σ σ

σ

−⎡ ⎤− −⎣ ⎦
⎡ ⎤= − −⎣ ⎦
⎡ ⎤= −⎣ ⎦

 

where the last equality is due to the identity N(−x) = 1 – N(x). 
 
By (20.12), the random variable ( )ln S t⎡ ⎤⎣ ⎦  is normally distributed with variance 2tσ .  

Thus, statement (iii) means that 2 0.4σ = , and 
  1 1 1

2 2 20.4 10 2 1= × = × =Tσ . 
Therefore, the option price is 
 [ ] [ ](0) 2 (1) 1 100 2 0.8413 1 68.26S N − = × − = . 
 
 
9.  Answer = (A) 
 
This problem is a modification of the example on page 805.  Note that the example is 
about cap payments on a four-year loan, not a three-year loan. 
 
An interest rate cap pays the difference between the realized interest rate in a period 
and the cap rate, if the difference is positive.  Observe that in this problem only ru  and 
ruu are higher than 7.5%. 
 
At the “u” node, it is expected that a payment of 100×(7.704% − 7.5%) will be made 
at the end of the year.  Thus, the present value of the payment at the node is 

   ( )100 7.704% 7.5%
0.18941

1 7.704%
× −

=
+

. 

At the “uu” node, it is expected that a payment of 100×(9.892% − 7.5%) will be made 
at the end of the year.  Thus, the present value of the payment at the node is 

    ( )100 9.892% 7.5%
2.17668

1 9.892%
× −

=
+

. 
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The tree below corresponds to Figure 24.5 and Figure 24.9 of McDonald (2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By risk-neutral pricing, the time-0 price of the interest rate cap is 

1/ 2 0.18941
1 6%

×
+

  +  1/2 1/ 2
1 6% 1 7.704%

×
+ +

×2.17668 

0.08934 0.47649 0.565827= + = ≈ 0.57 
 
Remark:  The cap payments are not $0.18941 and $2.17668.  They are 
$100×(7.704% − 7.5%) to be paid one year after the u node, and  
$100×(9.892% − 7.5%) to be paid one year after the uu node.  One may be tempted to 
put $100×(7.704% − 7.5%) at the uu node and at the ud node, and put  
$100×(9.892% − 7.5%) at the uuu node and at the uud node.  Unfortunately, this can 
be confusing, because these cash flows are not path-independent.  For example, if one 
reaches the ud node via the d node, then there is no cap payment because rd is less 
than 7.5%. 
 
 
10. Answer = (B)  
  
Let y = number of units of the stock you will buy, 

z = number of units of the Call-II option you will buy. 
If x or y turns out to be negative, this means that you sell. 
 
Delta-neutrality means 
 1000 × 0.5825  =  y × 1  +  z × 0.7773. 
Gamma-neutrality means 
 1000 × 0.0651  =  y × 0  +  z × 0.0746. 
 

6.000% 
$0 

4.673% 
$0 

7.704% 
$0.18941 

9.892% 
$2.17668 

Year 0 Year 1 Year 2 

6.000% 
$0 

3.639% 
$0 
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From the second equation (the gamma-neutral equation), we obtain 
 z  =  65.1/0.0746  =  872.654  ≈  872.7. 
(This is sufficient to determine that (B) is the correct answer.)  Substituting this in the 
first equation (the delta-neutral equation) yields 
 y  =  582.5  −  872.7 × 0.7773  =  −95.8. 
 
 
11. Answer = (D) 
 
With 1.181u = , 0.890d = , 0.5h = , and 0δ = , the risk-neutral probability that the 
stock price will increase at the end of a period is 

( ) 0.05 0.5 0.890* 0.465
1.181 0.890

r he d ep
u d

− ×− −
= = =

− −

δ

.   (10.5) 

 
For the two-period model, the stock prices are 

0 70S =  

0 1.181 70 82.67uS uS= = × =    0 0.890 70 62.30dS dS= = × =  
1.181 82.67 97.63uu uS uS= = × =    0.890 82.67 73.58ud uS dS= = × =  
0.890 62.30 55.45dd dS dS= = × =  

 
Let P0, Pu, Pd, Puu, Pud, Pdd denote the corresponding prices for the American put 
option.  The three prices at the option expiry date are 
 Puu = max(K − Suu, 0)  =  max(80 − 97.63, 0)  =  0,  
 Pud = max(K − Sud, 0)  =  max(80 − 73.58, 0)  =  6.42,  
 Pdd = max(K − Sdd, 0)  =  max(80 − 55.45, 0)  =  24.55. 
 
By the backward induction formula (10.12), the two prices at time 1 are 
 Pu = max(K − Su, e−rh[Puup*  +  Pud(1 – p*)])   

     = max(80 − 82.67, e−0.05/2[0×0.465 + 6.42×(1 – 0.465)]) 
     = e−0.05/2×6.42×0.535  
     = 3.35, 

  Pd = max(K − Sd, e−rh[Pudp*  +  Pdd(1 – p*)])   
     = max(80 − 62.30, e−0.05/2[6.42×0.465 + 24.55×(1 – 0.465)]) 
     = max(17.70, 15.72) 
     = 17.70. 
 

Finally, the time-0 price of the American put option is 
 P0 = max(K − S0, e−rh[Pup*  +  Pd(1 – p*)])   

     = max(80 − 70, e−0.05/2[3.35×0.465 + 17.70×(1 – 0.465)]) 
     = max(10, 10.75)   
     = 10.75. 
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12. Answer = (A) 
 
Define the function f (x, t)  =  xe(r−r*)(T−t).  Then, 
   G(t)  =  f (S(t), t). 
 

Obviously, ),( txf
x∂

∂ = e(r−r*)(T−t), ),(2

2

txf
x∂

∂ = 0, and ),( txf
t∂

∂ = f(x, t)(r−r*)(−1). 

 
By Itô’s Lemma, we have 
   dG(t) =  e(r−r*)(T−t)dS(t)  +  0  +  f(S(t), t)(r* − r)dt 
  =  e(r−r*)(T−t)S(t)[0.1dt + 0.4dZ(t)]  +  G(t)(r* − r)dt 
  =  G(t)[0.1dt + 0.4dZ(t)]  +  G(t)(0.10 − 0.08)dt 
  =  G(t)[(0.1 + 0.02)dt  +  0.4dZ(t)] 
  =  G(t)[0.12dt  +  0.4dZ(t)]. 
 
 
13. Answer = (E) 
 
In a Vasicek model, zero-coupon bond prices are of the form    
  ( , )( , , ) ( , ) B t T rP t T r A t T e−= .      (24.26)  
Furthermore, the functions ( , )A t T  and ( , )B t T  are functions of T t− .  Therefore, we 
can rewrite formula (24.26) as 

[ ]( )( , , ) exp ( ) ( )P t T r T t T t rα β= − − + − . 
 

The first two pieces of data tell us: 
 (2) (2) 0.040.9445 e α β− − ×=  
 (2) (2) 0.050.9321 e α β− − ×=  
which, by taking logarithms, are equivalent to 
 0.0571 (2) (2) 0.04α β= + ×  
 0.0703 (2) (2) 0.05α β= + ×  
 
The solution of this pair of linear equations is 
 (2) 1.32β =  
 (2) 0.0043α =  
 
The last piece of data says 
 (2) (2) *0.8960 re α β− −=  
 
Taking logarithms yields 0.1098 (2) (2) *rα β= + ,  
or 
 r*  =  (0.1098 – 0.0043)/1.32  =  0.08. 
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Remark:  By comparing (24.29) with (24.26), we see that the word “Vasicek” in this 
problem can be changed to “CIR.” 
 
 
14. Answer = (E) 
 
This is a one-period binomial model.  Let p* be the risk-neutral probability of an 
increase in the stock price.  (See page 321.)  Then, 

 60 45*
70 45

rep × −
=

−
 = 

0.0860 45
70 45
e× −

−
 = 0.79988896 ≈ 0.8. 

  
By risk-neutral pricing, the price of the straddle is 
    e−r[p*|70 – K|  +  (1 − p*)|45 – K|] =  e−0.08[p*|70 – 50|  +  (1 − p*)|45 – 50|]   
      =  e−0.08[p*×20  +  (1 − p*)×5]    
      =  e−0.08[15p*  +  5]  
      ≈  e−0.08[15×0.8  +  5]    
      =  e−0.08×17  = 15.693 

≈  15.70. 
   
 
15.  Answer = (C) 
 
This is a variation of Example 12.3 on page 380.  Because of the discrete dividend, 
we are to use the version of the Black-Scholes put option formula that is in terms of 
prepaid forward prices.  The prepaid forward price of the stock is 

0,1/ 2( )PF S  = 50 – 1.50e−0.05/3 = 50 – 1.5×0.983471 = 48.5248. 
We apply formula (12.2a), with S = 48.5248, K = 50, r = 0.05, δ = 0, σ = 0.3, and  
T = ½, to obtain 

       d1 = {ln(48.5248/50)  +  [0.05 – 0 + (0.3)2/2]×½}/{0.3× ½ } 
       = {−0.02995  +  0.0475}/0.212132 
       = 0.082740 

≈  0.08. 
(This is the same as applying the formula for d1 that follows (12.5) on page 380.) 
Then, 

      d2  =  0.082740  –  0.212132  =  −0.129392  ≈  −0.13. 
It now follows from the prepaid forward price version of (12.3) that the put option 
price is 

50e−0.05/2N(+0.13) – 48.5248N(−0.08) 
 = (50×0.975351×0.5517)  –  (48.5248×0.4681) 
 = 26.9039  –  22.7145   

= 4.1894 
≈  4.19. 
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Remark added in April 2009:  The following sentence can be found on page 381 in 
new printings of McDonald (2006).  “Because the dividend is fixed, the volatility in 
Example 12.3 is the volatility of the prepaid forward, rather than the volatility of the 
stock.” 
 
16. Answer = (D) 
 

Define  β = 2
1
2

r −
−

δ
σ

.  Then, the formulas on page 403 for h1  and h2 are 

2
1 2

2rh = − + +β β
σ

 

and 

 2
2 2

2rh = − − +β β
σ

. 

 
Adding these two equations yields 

  h1  + h2 = −2β. 
Hence, −2β = 7/9 or β = −7/18. 
 
For r = 5% and σ = 0.3, 

2
1 2

2rh = − + +β β
σ

 
2

2
7 7 2 0.05

18 18 0.3
− ×⎛ ⎞= + +⎜ ⎟

⎝ ⎠
≈ 1.51. 

 
Alternative solution:  The parameters h1 and h2 are the positive and negative roots, 
respectively, of the quadratic equation 

2

2σ h2  +  (r – δ − 
2

2σ )h  −  r  =  0;    (*) 

see the study note “Some Remarks on Derivatives Markets.”  Thus,  

  
2

2σ h2  +  (r – δ − 
2

2σ )h  −  r  =  
2

2σ (h – h1)(h – h2). 

Consequently, 

          r – δ − 
2

2σ  = 
2

2σ (–h1 – h2)  =  
2

2σ
× − 7

9
. 

Hence, the quadratic equation (*) becomes  

   
20.3

2
h2  +  (

20.3
2

× − 7
9

)h  −  0.05  =  0, 

the positive root of which is h1. 
 
Remark:  For a positive δ, the positive root h1 is in fact greater than 1.  
 
Remark added in April 2009:  Question 16 is not in the current syllabus of MFE/3F. 
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17. Answer = (B) 
 
In terms of the notation in Section 14.15, K1 = 90 and K2 = 100.  
 
By (12.1), and (12.2a, b), statement (ii) of the problem is 
  1 2 24 (0) ( ) ( )T rTS e N d K e N dδ− −= − ,    (1) 
where ( )0 80,=S  

21
2 2

1
ln( (0) / ) ( )S K r T

d
T

δ σ
σ
+ − +

= , 

and  

d2 = d1 − σ T   =  
21

2 2ln( (0) / ) ( )S K r T
T

δ σ
σ
+ − −

. 

Do note that both d1 and d2 depend on K2, but not on K1. 
 
From the last paragraph on page 383 and from statement (iii), we have 

1( )Te N dδ−Δ =  =  0.2, 
and hence equation (1) becomes 
  24 80 0.2 100 ( )rTe N d−= × − , 
or 

2( ) (80 0.2 4) /100 0.12rTe N d− = × − = . 
 

By (14.15) on page 458, the gap call option price is 
 1 1 2(0) ( ) ( )T rTS e N d K e N dδ− −−  
 =  80 0.2 90 0.12× − ×  =  5.2. 
 
 
Remark:  The payoff of the gap call option is 
   [S(T) – K1]×I(S(T) > K2), 
where I(S(T) > K2) is the indicator random variable, which takes the value 1 if  
S(T) > K2 and the value 0 otherwise.  Because the payoff can be expressed as  

S(T)×I(S(T) > K2)  –  K1×I(S(T) > K2), 
we can obtain the pricing formula (14.15) by showing that the time-0 price for the 
time-T payoff 
     S(T)×I(S(T) > K2) 
is 
     1(0) ( )TS e N dδ− , 
and the time-0 price for the time-T payoff 
       I(S(T) > K2) 
is 
        e−rT N(d2). 
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Note that both d1 and d2 are calculated using the strike price K2.  We can use risk-
neutral pricing to verify these two results: 
  E*[e−rT S(T)×I(S(T) > K2)]  =  1(0) ( )TS e N dδ− , 
which is the pricing formula for a European asset-or-nothing (or digital share) call 
option, and  
   E*[e−rT I(S(T) > K2)]  =  e−rT N(d2), 
which is the pricing formula for a European cash-or- nothing (or digital cash) call 
option.  Here, we follow the notation on pages 604 and 605 that the asterisk is used to 
signify that the expectation is taken with respect to the risk-neutral probability 
measure.  Under the risk-neutral probability measure, the random variable 
ln[S(T)/S(0)] is normally distributed with mean (r – δ – 1

2 σ2)T and variance σ2T.   

 
The second expectation formula, which can be readily simplified as 
   E*[I(S(T) > K2)]  =   N(d2), 
is particularly easy to verify:  Because an indicator random variable takes the values 1 
and 0 only, we have 
   E*[I(S(T) > K2)]  =  Prob*[S(T) > K2], 
which is the same as 
   Prob*(ln[S(T)/S(0)]  >  ln[K2/S(0)]). 
To evaluate this probability, we use a standard method, which is also described on 
pages 590 and 591.  We subtract the mean of ln[S(T)/S(0)] from both sides of the 
inequality and then divide by the standard deviation of ln[S(T)/S(0)].  The left-hand 
side of the inequality is now a standard normal random variable, Z, and the right-hand 
side is 

         
2

2
2

ln[ / (0)] ( / 2)K S r T

T

δ σ

σ

− − −  =  
2

2ln[ (0) / ] ( / 2)S K r T
T

δ σ
σ
+ − −

−  

      =  −d2. 
Thus, we have 
         E*[I(S(T) > K2)] =  Prob*[S(T) > K2], 

=  Prob(Z > −d2) 
     =  1  −  N(−d2) 
     =  N(d2). 
 
The first expectation formula, 
   E*[e−rT S(T)×I(S(T) > K2)]  =  1(0) ( )TS e N dδ− , 
is harder to derive.  One method is to use formula (18.29).  A more elegant way is the 
actuarial method of Esscher transforms, which is not part of the syllabus of any 
actuarial examination.  It shows that the expectation of a product,  
   E*[e−rT S(T)×I(S(T) > K2)],  
can be factorized as a product of expectations, 
   E*[e−rT S(T)] × E**[I(S(T) > K2)], 
where ** signifies a changed probability measure.  It follows from (20.26) and 
(20.14) that 
   E*[e−rT S(T)]  =  e−δT S(0). 
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To evaluate the expectation E**[I(S(T) > K2)], which is Prob**[S(T) > K2], one shows 
that, under the probability measure **, the random variable ln[S(T)/S(0)] is normally 
distributed with mean  

     (r – δ − 1
2 σ2)T  +  σ2T   =  (r – δ  + 1

2 σ2)T, 

and variance σ2T.  Then, with steps identical to those above, we have 
       E**[I(S(T) > K2)] =  Prob**[S(T) > K2], 

=  Prob(Z > −d1) 
     =  1  −  N(−d1)   

=  N(d1). 
 
Alternative solution:   
Because the payoff of the gap call option is 

[S(T) – K1]×I(S(T) > K2)   
=  [S(T) – K2]×I(S(T) > K2)  +  (K2 – K1)×I(S(T) > K2), 

the price of the gap call option must be equal to the sum of the price of a European 
call option with the strike price K2 and the price of (K2 – K1) units of the 
corresponding cash-or-nothing call option.  Thus, with K1 = 90, K2 = 100, and 
statement (ii), the price of the gap call option is  

4 + (100 – 90)×e−rTProb*[S(T) > 100] 
=  24 10 ( )rTe N d−+ .  

On the other hand, from (ii), (iii), and (12.1), it follows that 
24 80(0.2) 100 ( ).rTe N d−= −  

Thus, 2( )rTe N d−  = 0.12, and the price of the gap call option is  
4 + 10×0.12 = 5.2. 

 
 
18. Answer = (A) 
 
In an arbitrage-free model, two assets having the same source of randomness (their 
prices driven by the same Brownian motion) must have the same Sharpe ratio (which 
is not necessarily constant with respect to time); see Section 20.4.  With r = 4%, we 
thus have 

0.07 0.04
0.12

−   =  0.04G
H

− , 

or 

     G  =  0.25H  +  0.04.      (1) 
If f(x) is a twice-differentiable function of x, then Itô’s Lemma (page 664) simplifies 
as 
  df(Y(t))  =  f ′(Y(t))dY(t)  +  1

2 f ″(Y(t))[dY(t)]2, 

because )(xf
t∂

∂  = 0.  If f(x) = ln x, then f ′(x) = 1/x and f ″(x) = −1/x2.  Hence, 
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  d(ln[Y(t)])  =  
)(

1
tY

dY(t) + 2
2 )](d[

)]([
1

2
1 tY

tY ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
− .   (2) 

We are given that 
   dY(t)  =  Y(t)[Gdt + HdZ(t)].     (3) 
Thus, 
  [dY(t)]2  =  {Y(t)[Gdt + HdZ(t)]}2  =  [Y(t)]2 H2 dt,   (4) 
by applying the multiplication rules (20.17) on pages 658 and 659.  Substituting (3) 
and (4) in (2) and simplifying yields 
  d(ln[Y(t)])  =  (G − 1

2 H2)dt  +  HdZ(t). 

Comparing this equation with the one in (i), we have  
   H  =  σ ,       (5) 

G − 1
2 H2  =  0.06.       (6) 

 
Applying (1) and (5) to (6) yields a quadratic equation of σ, 
  1

2 σ2  −  0.25σ  +  0.02  =  0,  

whose roots can be found by using the quadratic formula or by factorizing,  
  1

2 (σ  −  0.1)(σ  −  0.4)  =  0.   

 
By condition (iii), we cannot have σ = 0.4.  Thus, σ = 0.1.  Substituting H = 0.1 in (1) 
yields 
  G  =  0.25×0.1  +  0.04  =  0.065.  
 
Remark:  Exercise 20.1 on page 675 is to use Itô’s Lemma to evaluate d[ln(S)]. 
 
 
 
19. Answer = (D) 
 
The delta-gamma approximation is merely the Taylor series approximation with up to 
the quadratic term.  In terms of the Greek symbols, the first derivative is Δ, and the 
second derivative is Γ.  The approximation formula is 
    P(S + ε)  ≈  P(S)  + ε Δ  +  1

2 ε
2 Γ.   (13.2 & 13.5)   

 
With P(30) = 4, Δ = −0.28, Γ = 0.10, and ε = 1.50, we have 

         P(31.5) ≈  4 + (1.5)(−0.28) + 1
2 (1.5)2(0.1)   

=  3.6925   
≈  3.70. 

 


